Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022778596> ?p ?o ?g. }
- W2022778596 endingPage "78" @default.
- W2022778596 startingPage "45" @default.
- W2022778596 abstract "Invoking the optical extinction theorem (extended boundary condition) the conventional singular integral equation (for the density of reradiating sources existing in the surface of a totally reflecting body scattering monochromatic waves) is transformed into infinite sets of non-singular integral equations, called the null field equations. There is a set corresponding to each separable coordinate system (we say that we are using the ‘elliptic’, ‘spheroidal’, etc., null field method when we employ 'elliptic cylindrical', ‘spheroidal’, etc., coordinates). Each set can be used to compute the scattering from bodies of arbitrary shape, but each set is most appropriate for particular types of body shape as our computational results confirm. We assert that when the improvements (reported here) are incorporated into it, Waterman’s adaptation of the extinction theorem becomes a globally efficient computational approach. Shafai’s use of conformal transformation for automatically accomodating singularities of the surface source density is incorporated into the cylindrical null field methods. Our approach permits us to use multipole expansions in a computationally convenient manner, for arbitrary numbers of separated, interacting bodies of arbitrary shape. We present examples of computed surface source densities induced on pairs of elliptical and square cylinders." @default.
- W2022778596 created "2016-06-24" @default.
- W2022778596 creator A5016754003 @default.
- W2022778596 creator A5086469747 @default.
- W2022778596 date "1977-09-20" @default.
- W2022778596 modified "2023-10-01" @default.
- W2022778596 title "Null field approach to scalar diffraction I. General method" @default.
- W2022778596 cites W1679865614 @default.
- W2022778596 cites W1966951939 @default.
- W2022778596 cites W1967764205 @default.
- W2022778596 cites W1971676041 @default.
- W2022778596 cites W1979275889 @default.
- W2022778596 cites W1980639598 @default.
- W2022778596 cites W1981972791 @default.
- W2022778596 cites W1982888622 @default.
- W2022778596 cites W1983180510 @default.
- W2022778596 cites W1988544386 @default.
- W2022778596 cites W1988675994 @default.
- W2022778596 cites W1994267201 @default.
- W2022778596 cites W2005142611 @default.
- W2022778596 cites W2019758260 @default.
- W2022778596 cites W2021731248 @default.
- W2022778596 cites W2024224583 @default.
- W2022778596 cites W2027532667 @default.
- W2022778596 cites W2041726549 @default.
- W2022778596 cites W2049763180 @default.
- W2022778596 cites W2055665933 @default.
- W2022778596 cites W2066527399 @default.
- W2022778596 cites W2070908694 @default.
- W2022778596 cites W2075117941 @default.
- W2022778596 cites W2083273676 @default.
- W2022778596 cites W2085400940 @default.
- W2022778596 cites W2086310962 @default.
- W2022778596 cites W2089688882 @default.
- W2022778596 cites W2098015961 @default.
- W2022778596 cites W2099151789 @default.
- W2022778596 cites W2110186060 @default.
- W2022778596 cites W2119985571 @default.
- W2022778596 cites W2123880988 @default.
- W2022778596 cites W2125702038 @default.
- W2022778596 cites W2127165162 @default.
- W2022778596 cites W2127279852 @default.
- W2022778596 cites W2132771197 @default.
- W2022778596 cites W2138086364 @default.
- W2022778596 cites W2141280552 @default.
- W2022778596 cites W2141983508 @default.
- W2022778596 cites W2143092294 @default.
- W2022778596 cites W2143401331 @default.
- W2022778596 cites W2148758016 @default.
- W2022778596 cites W2152318224 @default.
- W2022778596 cites W2171145531 @default.
- W2022778596 cites W2477829615 @default.
- W2022778596 cites W567453437 @default.
- W2022778596 cites W651842448 @default.
- W2022778596 doi "https://doi.org/10.1098/rsta.1977.0139" @default.
- W2022778596 hasPublicationYear "1977" @default.
- W2022778596 type Work @default.
- W2022778596 sameAs 2022778596 @default.
- W2022778596 citedByCount "70" @default.
- W2022778596 countsByYear W20227785962013 @default.
- W2022778596 countsByYear W20227785962014 @default.
- W2022778596 countsByYear W20227785962015 @default.
- W2022778596 countsByYear W20227785962017 @default.
- W2022778596 countsByYear W20227785962018 @default.
- W2022778596 countsByYear W20227785962019 @default.
- W2022778596 countsByYear W20227785962020 @default.
- W2022778596 crossrefType "journal-article" @default.
- W2022778596 hasAuthorship W2022778596A5016754003 @default.
- W2022778596 hasAuthorship W2022778596A5086469747 @default.
- W2022778596 hasConcept C110521144 @default.
- W2022778596 hasConcept C121332964 @default.
- W2022778596 hasConcept C12843 @default.
- W2022778596 hasConcept C134306372 @default.
- W2022778596 hasConcept C202444582 @default.
- W2022778596 hasConcept C203763787 @default.
- W2022778596 hasConcept C2524010 @default.
- W2022778596 hasConcept C27016315 @default.
- W2022778596 hasConcept C2776799497 @default.
- W2022778596 hasConcept C33923547 @default.
- W2022778596 hasConcept C37914503 @default.
- W2022778596 hasConcept C41008148 @default.
- W2022778596 hasConcept C52765159 @default.
- W2022778596 hasConcept C57691317 @default.
- W2022778596 hasConcept C62354387 @default.
- W2022778596 hasConcept C62520636 @default.
- W2022778596 hasConcept C77088390 @default.
- W2022778596 hasConcept C80551277 @default.
- W2022778596 hasConcept C9652623 @default.
- W2022778596 hasConcept C98214594 @default.
- W2022778596 hasConceptScore W2022778596C110521144 @default.
- W2022778596 hasConceptScore W2022778596C121332964 @default.
- W2022778596 hasConceptScore W2022778596C12843 @default.
- W2022778596 hasConceptScore W2022778596C134306372 @default.
- W2022778596 hasConceptScore W2022778596C202444582 @default.
- W2022778596 hasConceptScore W2022778596C203763787 @default.
- W2022778596 hasConceptScore W2022778596C2524010 @default.
- W2022778596 hasConceptScore W2022778596C27016315 @default.
- W2022778596 hasConceptScore W2022778596C2776799497 @default.