Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022793338> ?p ?o ?g. }
- W2022793338 endingPage "4820" @default.
- W2022793338 startingPage "4784" @default.
- W2022793338 abstract "Aluminum and gallium atoms have been trapped in Ne, Ar, Kr, and Xe matrices and studied by optical and ESR spectroscopy at 4.2 °K and slightly higher temperatures. The results indicate that both metal atoms occupy axially distorted substitutional sites in all rare gas lattices. This elongated tetradecahedral MeX12 coordination is particularly stable for rare gas complexes of Group III metal atoms exhibiting a single unpaired electron in their outermost p shell. From the ESR data large splittings of the aluminum and gallium p shells have been derived increasing from [inverted lazy s] 1600 cm−1 in neon to [inverted lazy s] 3200 cm−1 in xenon for both atoms. The corresponding Jahn‐Teller stabilization energies EJT (increasing from [inverted lazy s] 1.5 kcal/mole for MeNe12 to [inverted lazy s] 3.0 kcal for MeXe12) can be explained by the ``σ‐π'' effect: The van der Waals interatomic correlation energy is maximized, and the repulsive exchange energy is minimized by attraction of the equatorial ligand atoms to the metal center and repulsion of the remaining ligands from the σ antibonding axial positions. The 2S ← 2P[(n + 1)s ← np] electronic transitions are shifted by [inverted lazy s] + 1000 cm−1 (MXe12) to [inverted lazy s] + 6000 cm−1 (MNe12) relative to the free metal atom values. The ESR spectra exhibit axial symmetry, show effects of preferential orientation, and demonstrate almost complete quenching of the free atom angular momentum in each case. The basic features of the g values and the metal hyperfine tensor (and of their strong dependence on the matrix and on temperature) can be understood within a simple crystal field model, but there are significant deviations. The introduction of orbital angular momentum and spin‐orbit reduction factors resulting from orthogonalization of the metal p orbitals to the valence shells of the surrounding rare gas atoms removed a large part of the discrepancies, but quantitative agreement with experiment could be obtained only when the dynamic Jahn‐Teller effect was taken into account. In order to establish the geometries of the rare gas cages surrounding the trapped metal atoms, numerical calculations of orbital and spin‐orbit reduction factors were performed for various sites in the rare gas lattices. For the determination of the vibronic quenching parameters a slight extension of Ham's second order theory of an orbital triplet interacting with an e2g vibrational mode was required. Our results indicate a remarkable stability of the Al and Ga rare gas complexes. Indeed, from the results of Baylis' semiempirical calculations it can be concluded that atoms with singly occupied p shells form the strongest van der Waals complexes with rare gas atoms among all atoms in the periodic table." @default.
- W2022793338 created "2016-06-24" @default.
- W2022793338 creator A5010735787 @default.
- W2022793338 creator A5032427083 @default.
- W2022793338 date "1973-11-01" @default.
- W2022793338 modified "2023-10-12" @default.
- W2022793338 title "Electronic quenching of Al and Ga atoms isolated in rare gas matrices" @default.
- W2022793338 cites W1505826283 @default.
- W2022793338 cites W1965807513 @default.
- W2022793338 cites W1966549300 @default.
- W2022793338 cites W1974644814 @default.
- W2022793338 cites W1976348540 @default.
- W2022793338 cites W1977748452 @default.
- W2022793338 cites W1978997169 @default.
- W2022793338 cites W1980239324 @default.
- W2022793338 cites W1983140101 @default.
- W2022793338 cites W1983863267 @default.
- W2022793338 cites W1986881474 @default.
- W2022793338 cites W1989906206 @default.
- W2022793338 cites W1989994524 @default.
- W2022793338 cites W1991932861 @default.
- W2022793338 cites W1996590564 @default.
- W2022793338 cites W2001295869 @default.
- W2022793338 cites W2003129748 @default.
- W2022793338 cites W2004296693 @default.
- W2022793338 cites W2010777787 @default.
- W2022793338 cites W2016512058 @default.
- W2022793338 cites W2020739266 @default.
- W2022793338 cites W2022751850 @default.
- W2022793338 cites W2022912251 @default.
- W2022793338 cites W2023371561 @default.
- W2022793338 cites W2030063462 @default.
- W2022793338 cites W2037027715 @default.
- W2022793338 cites W2037260284 @default.
- W2022793338 cites W2039123793 @default.
- W2022793338 cites W2040638998 @default.
- W2022793338 cites W2041999331 @default.
- W2022793338 cites W2045912147 @default.
- W2022793338 cites W2046393790 @default.
- W2022793338 cites W2047865201 @default.
- W2022793338 cites W2050784495 @default.
- W2022793338 cites W2051660451 @default.
- W2022793338 cites W2062921075 @default.
- W2022793338 cites W2070943488 @default.
- W2022793338 cites W2082394818 @default.
- W2022793338 cites W2085767998 @default.
- W2022793338 cites W2087806165 @default.
- W2022793338 cites W2090337846 @default.
- W2022793338 cites W2095344063 @default.
- W2022793338 cites W2121558616 @default.
- W2022793338 cites W2151699417 @default.
- W2022793338 cites W2165662109 @default.
- W2022793338 cites W2197441986 @default.
- W2022793338 cites W2328907905 @default.
- W2022793338 cites W2330687521 @default.
- W2022793338 cites W4231903489 @default.
- W2022793338 cites W4240919200 @default.
- W2022793338 cites W4251836420 @default.
- W2022793338 doi "https://doi.org/10.1063/1.1680693" @default.
- W2022793338 hasPublicationYear "1973" @default.
- W2022793338 type Work @default.
- W2022793338 sameAs 2022793338 @default.
- W2022793338 citedByCount "107" @default.
- W2022793338 countsByYear W20227933382012 @default.
- W2022793338 countsByYear W20227933382019 @default.
- W2022793338 countsByYear W20227933382021 @default.
- W2022793338 crossrefType "journal-article" @default.
- W2022793338 hasAuthorship W2022793338A5010735787 @default.
- W2022793338 hasAuthorship W2022793338A5032427083 @default.
- W2022793338 hasConcept C121332964 @default.
- W2022793338 hasConcept C126061179 @default.
- W2022793338 hasConcept C131538251 @default.
- W2022793338 hasConcept C147120987 @default.
- W2022793338 hasConcept C149635348 @default.
- W2022793338 hasConcept C178790620 @default.
- W2022793338 hasConcept C184779094 @default.
- W2022793338 hasConcept C185592680 @default.
- W2022793338 hasConcept C186927785 @default.
- W2022793338 hasConcept C189394030 @default.
- W2022793338 hasConcept C32909587 @default.
- W2022793338 hasConcept C41008148 @default.
- W2022793338 hasConcept C550372918 @default.
- W2022793338 hasConcept C58312451 @default.
- W2022793338 hasConcept C62520636 @default.
- W2022793338 hasConcept C8010536 @default.
- W2022793338 hasConcept C95269574 @default.
- W2022793338 hasConceptScore W2022793338C121332964 @default.
- W2022793338 hasConceptScore W2022793338C126061179 @default.
- W2022793338 hasConceptScore W2022793338C131538251 @default.
- W2022793338 hasConceptScore W2022793338C147120987 @default.
- W2022793338 hasConceptScore W2022793338C149635348 @default.
- W2022793338 hasConceptScore W2022793338C178790620 @default.
- W2022793338 hasConceptScore W2022793338C184779094 @default.
- W2022793338 hasConceptScore W2022793338C185592680 @default.
- W2022793338 hasConceptScore W2022793338C186927785 @default.
- W2022793338 hasConceptScore W2022793338C189394030 @default.
- W2022793338 hasConceptScore W2022793338C32909587 @default.
- W2022793338 hasConceptScore W2022793338C41008148 @default.