Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022798364> ?p ?o ?g. }
- W2022798364 endingPage "1267" @default.
- W2022798364 startingPage "1259" @default.
- W2022798364 abstract "Abstract. Landslides are devastating phenomena that cause huge damage around the world. This paper presents a quasi-global landslide model derived using satellite precipitation data, land-use land cover maps, and 250 m topography information. This suggested landslide model is based on the Support Vector Machines (SVM), a machine learning algorithm. The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) landslide inventory data is used as observations and reference data. In all, 70% of the data are used for model development and training, whereas 30% are used for validation and verification. The results of 100 random subsamples of available landslide observations revealed that the suggested landslide model can predict historical landslides reliably. The average error of 100 iterations of landslide prediction is estimated to be approximately 7%, while approximately 2% false landslide events are observed." @default.
- W2022798364 created "2016-06-24" @default.
- W2022798364 creator A5009096458 @default.
- W2022798364 creator A5050684806 @default.
- W2022798364 date "2013-05-16" @default.
- W2022798364 modified "2023-09-23" @default.
- W2022798364 title "A satellite-based global landslide model" @default.
- W2022798364 cites W1508402705 @default.
- W2022798364 cites W1513906301 @default.
- W2022798364 cites W1657726016 @default.
- W2022798364 cites W1852984854 @default.
- W2022798364 cites W1959945168 @default.
- W2022798364 cites W1965229818 @default.
- W2022798364 cites W1967258966 @default.
- W2022798364 cites W1970966350 @default.
- W2022798364 cites W1970978060 @default.
- W2022798364 cites W1973774517 @default.
- W2022798364 cites W1975786666 @default.
- W2022798364 cites W1977350553 @default.
- W2022798364 cites W1978423266 @default.
- W2022798364 cites W1982239205 @default.
- W2022798364 cites W1985245433 @default.
- W2022798364 cites W1995622703 @default.
- W2022798364 cites W1999270267 @default.
- W2022798364 cites W2007982952 @default.
- W2022798364 cites W2008056655 @default.
- W2022798364 cites W2008113503 @default.
- W2022798364 cites W2009197215 @default.
- W2022798364 cites W2030537026 @default.
- W2022798364 cites W2033715873 @default.
- W2022798364 cites W2037402385 @default.
- W2022798364 cites W2040592978 @default.
- W2022798364 cites W2040954516 @default.
- W2022798364 cites W2043567090 @default.
- W2022798364 cites W2049466036 @default.
- W2022798364 cites W2054477479 @default.
- W2022798364 cites W2057923076 @default.
- W2022798364 cites W2060923887 @default.
- W2022798364 cites W2069556938 @default.
- W2022798364 cites W2082134041 @default.
- W2022798364 cites W2082469684 @default.
- W2022798364 cites W2083811565 @default.
- W2022798364 cites W2091221103 @default.
- W2022798364 cites W2094653192 @default.
- W2022798364 cites W2101394945 @default.
- W2022798364 cites W2107424563 @default.
- W2022798364 cites W2118803688 @default.
- W2022798364 cites W2119803205 @default.
- W2022798364 cites W2134955829 @default.
- W2022798364 cites W2135840472 @default.
- W2022798364 cites W2137318649 @default.
- W2022798364 cites W2142355173 @default.
- W2022798364 cites W2153656222 @default.
- W2022798364 cites W2158821255 @default.
- W2022798364 cites W2170268274 @default.
- W2022798364 cites W2172609192 @default.
- W2022798364 cites W2314389726 @default.
- W2022798364 cites W4239510810 @default.
- W2022798364 doi "https://doi.org/10.5194/nhess-13-1259-2013" @default.
- W2022798364 hasPublicationYear "2013" @default.
- W2022798364 type Work @default.
- W2022798364 sameAs 2022798364 @default.
- W2022798364 citedByCount "47" @default.
- W2022798364 countsByYear W20227983642014 @default.
- W2022798364 countsByYear W20227983642015 @default.
- W2022798364 countsByYear W20227983642016 @default.
- W2022798364 countsByYear W20227983642017 @default.
- W2022798364 countsByYear W20227983642018 @default.
- W2022798364 countsByYear W20227983642019 @default.
- W2022798364 countsByYear W20227983642020 @default.
- W2022798364 countsByYear W20227983642021 @default.
- W2022798364 countsByYear W20227983642022 @default.
- W2022798364 countsByYear W20227983642023 @default.
- W2022798364 crossrefType "journal-article" @default.
- W2022798364 hasAuthorship W2022798364A5009096458 @default.
- W2022798364 hasAuthorship W2022798364A5050684806 @default.
- W2022798364 hasBestOaLocation W20227983641 @default.
- W2022798364 hasConcept C107054158 @default.
- W2022798364 hasConcept C12267149 @default.
- W2022798364 hasConcept C127313418 @default.
- W2022798364 hasConcept C127413603 @default.
- W2022798364 hasConcept C146978453 @default.
- W2022798364 hasConcept C147176958 @default.
- W2022798364 hasConcept C153294291 @default.
- W2022798364 hasConcept C154945302 @default.
- W2022798364 hasConcept C165205528 @default.
- W2022798364 hasConcept C186295008 @default.
- W2022798364 hasConcept C19269812 @default.
- W2022798364 hasConcept C205649164 @default.
- W2022798364 hasConcept C2780648208 @default.
- W2022798364 hasConcept C41008148 @default.
- W2022798364 hasConcept C4792198 @default.
- W2022798364 hasConcept C62649853 @default.
- W2022798364 hasConceptScore W2022798364C107054158 @default.
- W2022798364 hasConceptScore W2022798364C12267149 @default.
- W2022798364 hasConceptScore W2022798364C127313418 @default.
- W2022798364 hasConceptScore W2022798364C127413603 @default.
- W2022798364 hasConceptScore W2022798364C146978453 @default.