Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022806456> ?p ?o ?g. }
- W2022806456 endingPage "295" @default.
- W2022806456 startingPage "284" @default.
- W2022806456 abstract "A fundamental prerequisite of any remedial activity is a sound knowledge of both the biotic and abiotic processes involved in transport and degradation of contaminants. Investigations of these aspects in situ often seem infeasible due to the complexity of interacting processes. A simplified portrayal of nature can be facilitated in laboratory-based two-dimensional (2D) sediment flow-through microcosms. This paper describes the versatility of such simple aquifer model systems with respect to biodegradation of aromatic hydrocarbons, i.e. toluene and ethylbenzene, under various environmental conditions. Initially constructed to study non-reactive and bioreactive transport of organic contaminants in homogeneous porous media under steady state hydraulic conditions, experimental setups developed towards more realistic heterogeneous sediment packing and transient hydraulic conditions. High-resolution spatial and temporal sampling allowed to obtain new insights on the distribution of bioactivities in contaminant plumes and associated controlling and limiting factors. Major biodegradation activities in saturated porous sediments are located at the fringes of contaminant plumes and are driven by dispersive mixing. These hot-spots of contaminant biotransformation are characterized by steep physical–chemical gradients in the millimeter to centimeter range. Sediment heterogeneity, i.e. high-conductivity zones, was shown to significantly enhance transverse mixing and subsequently biodegradation. On the contrary, transient hydraulic conditions may generate intermediate disturbances to biodegrader populations and thus may interfere with optimized contaminant conversion. However, a bacterial strain aerobically degrading toluene, i.e. Pseudomonas putida F1, was shown to adapt to vertically moving contaminant plumes, in the way that it regained full biodegradation potential two-times faster in areas with a mid-term (days to weeks) contamination history than in areas not contaminated before. The 2D flow-through microcosms facilitated to combine a number of physicochemical and microbiological methods, such as high-resolution non-invasive oxygen measurements, conservative tracer tests, compound-specific isotope analysis (CSIA), fluorescence in situ hybridization (FISH), and numerical transport modelling, to name a few. Moreover, due to the defined and well-controlled operating conditions, these bench-scale flow-through systems allow to investigate theoretical concepts and to develop and test predictive models. They represent a valuable tool in helping to bridge the current knowledge gap concerning transport and degradation of contaminants in groundwater from the small-scale (i.e. oversimplified batch systems, disregarding transport processes) to the highly complex field conditions. The promising potential of applications is by far not exhausted. Further possibilities include testing ecological theories such as the resource-ratio theory, island biogeography, area-species richness relationships and relations between community structure, microbial abundance and process rates as well as the importance and effects of bacterial chemotaxis." @default.
- W2022806456 created "2016-06-24" @default.
- W2022806456 creator A5011040589 @default.
- W2022806456 creator A5018416031 @default.
- W2022806456 creator A5033728939 @default.
- W2022806456 creator A5038842840 @default.
- W2022806456 creator A5069056358 @default.
- W2022806456 creator A5091170747 @default.
- W2022806456 date "2009-05-01" @default.
- W2022806456 modified "2023-10-15" @default.
- W2022806456 title "Two-dimensional flow-through microcosms – Versatile test systems to study biodegradation processes in porous aquifers" @default.
- W2022806456 cites W1497104791 @default.
- W2022806456 cites W1543951231 @default.
- W2022806456 cites W1574948262 @default.
- W2022806456 cites W1658524603 @default.
- W2022806456 cites W1879460009 @default.
- W2022806456 cites W1966118467 @default.
- W2022806456 cites W1973533118 @default.
- W2022806456 cites W1974985935 @default.
- W2022806456 cites W1980306297 @default.
- W2022806456 cites W1984471819 @default.
- W2022806456 cites W1985163442 @default.
- W2022806456 cites W1985463873 @default.
- W2022806456 cites W1987005562 @default.
- W2022806456 cites W1990707974 @default.
- W2022806456 cites W1991357054 @default.
- W2022806456 cites W1991527355 @default.
- W2022806456 cites W1992495781 @default.
- W2022806456 cites W2002530934 @default.
- W2022806456 cites W2006351446 @default.
- W2022806456 cites W2009681012 @default.
- W2022806456 cites W2011213540 @default.
- W2022806456 cites W2016146564 @default.
- W2022806456 cites W2019508569 @default.
- W2022806456 cites W2020742180 @default.
- W2022806456 cites W2028335655 @default.
- W2022806456 cites W2030691006 @default.
- W2022806456 cites W2036388702 @default.
- W2022806456 cites W2038412744 @default.
- W2022806456 cites W2039068047 @default.
- W2022806456 cites W2039737830 @default.
- W2022806456 cites W2040461496 @default.
- W2022806456 cites W2040872411 @default.
- W2022806456 cites W2043865920 @default.
- W2022806456 cites W2056320146 @default.
- W2022806456 cites W2057411318 @default.
- W2022806456 cites W2058335922 @default.
- W2022806456 cites W2062576174 @default.
- W2022806456 cites W2066882591 @default.
- W2022806456 cites W2067226037 @default.
- W2022806456 cites W2073177663 @default.
- W2022806456 cites W2074390343 @default.
- W2022806456 cites W2081563254 @default.
- W2022806456 cites W2084398509 @default.
- W2022806456 cites W2086906241 @default.
- W2022806456 cites W2090640728 @default.
- W2022806456 cites W2103835297 @default.
- W2022806456 cites W2103965065 @default.
- W2022806456 cites W2118168060 @default.
- W2022806456 cites W2131124131 @default.
- W2022806456 cites W2134731764 @default.
- W2022806456 cites W2134892167 @default.
- W2022806456 cites W2138083526 @default.
- W2022806456 cites W2155093486 @default.
- W2022806456 cites W2156414674 @default.
- W2022806456 cites W2166905151 @default.
- W2022806456 cites W2169753153 @default.
- W2022806456 cites W4243301957 @default.
- W2022806456 cites W81747448 @default.
- W2022806456 doi "https://doi.org/10.1016/j.jhydrol.2009.02.037" @default.
- W2022806456 hasPublicationYear "2009" @default.
- W2022806456 type Work @default.
- W2022806456 sameAs 2022806456 @default.
- W2022806456 citedByCount "44" @default.
- W2022806456 countsByYear W20228064562012 @default.
- W2022806456 countsByYear W20228064562013 @default.
- W2022806456 countsByYear W20228064562014 @default.
- W2022806456 countsByYear W20228064562015 @default.
- W2022806456 countsByYear W20228064562016 @default.
- W2022806456 countsByYear W20228064562017 @default.
- W2022806456 countsByYear W20228064562018 @default.
- W2022806456 countsByYear W20228064562019 @default.
- W2022806456 countsByYear W20228064562020 @default.
- W2022806456 countsByYear W20228064562021 @default.
- W2022806456 countsByYear W20228064562023 @default.
- W2022806456 crossrefType "journal-article" @default.
- W2022806456 hasAuthorship W2022806456A5011040589 @default.
- W2022806456 hasAuthorship W2022806456A5018416031 @default.
- W2022806456 hasAuthorship W2022806456A5033728939 @default.
- W2022806456 hasAuthorship W2022806456A5038842840 @default.
- W2022806456 hasAuthorship W2022806456A5069056358 @default.
- W2022806456 hasAuthorship W2022806456A5091170747 @default.
- W2022806456 hasConcept C105569014 @default.
- W2022806456 hasConcept C105923489 @default.
- W2022806456 hasConcept C107872376 @default.
- W2022806456 hasConcept C127313418 @default.
- W2022806456 hasConcept C151730666 @default.
- W2022806456 hasConcept C157021035 @default.