Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022809666> ?p ?o ?g. }
- W2022809666 endingPage "175" @default.
- W2022809666 startingPage "171" @default.
- W2022809666 abstract "Several different approaches to quantum gravity suggest the effective dimension of spacetime reduces from four to two near the Planck scale. In light of such evidence, this Letter re-examines the thermodynamics of primordial black holes (PBHs) in specific lower-dimensional gravitational models. Unlike in four dimensions, (1+1)-D black holes radiate with power P∼MBH2, while it is known no (2+1)-D (BTZ) black holes can exist in a non-anti-de Sitter universe. This has important relevance to the PBH population size and distribution, and consequently on cosmological evolution scenarios. The number of PBHs that have evaporated to present day is estimated, assuming they account for all dark matter. Entropy conservation during dimensional transition imposes additional constraints. If the cosmological constant is non-negative, no black holes can exist in the (2+1)-dimensional epoch, and consequently a (1+1)-dimensional black hole will evolve to become a new type of remnant. Although these results are conjectural and likely model-dependent, they open new questions about the viability of PBHs as dark matter candidates." @default.
- W2022809666 created "2016-06-24" @default.
- W2022809666 creator A5028241581 @default.
- W2022809666 date "2012-09-01" @default.
- W2022809666 modified "2023-09-23" @default.
- W2022809666 title "Primordial black hole evaporation and spontaneous dimensional reduction" @default.
- W2022809666 cites W1573499135 @default.
- W2022809666 cites W1587068176 @default.
- W2022809666 cites W1605779861 @default.
- W2022809666 cites W1629883607 @default.
- W2022809666 cites W1634650116 @default.
- W2022809666 cites W1643550339 @default.
- W2022809666 cites W1678559579 @default.
- W2022809666 cites W1755255337 @default.
- W2022809666 cites W1762464130 @default.
- W2022809666 cites W1763748250 @default.
- W2022809666 cites W180319703 @default.
- W2022809666 cites W1806742074 @default.
- W2022809666 cites W1837630089 @default.
- W2022809666 cites W1843165837 @default.
- W2022809666 cites W1872955300 @default.
- W2022809666 cites W1967277501 @default.
- W2022809666 cites W1976328338 @default.
- W2022809666 cites W1980110343 @default.
- W2022809666 cites W1983084300 @default.
- W2022809666 cites W1992353097 @default.
- W2022809666 cites W1993951308 @default.
- W2022809666 cites W1995008408 @default.
- W2022809666 cites W1995009967 @default.
- W2022809666 cites W1995176380 @default.
- W2022809666 cites W1998388948 @default.
- W2022809666 cites W2000176747 @default.
- W2022809666 cites W2000629640 @default.
- W2022809666 cites W2003602591 @default.
- W2022809666 cites W2006552285 @default.
- W2022809666 cites W2012362388 @default.
- W2022809666 cites W2013722344 @default.
- W2022809666 cites W2014352496 @default.
- W2022809666 cites W2021037765 @default.
- W2022809666 cites W2023945983 @default.
- W2022809666 cites W2033329888 @default.
- W2022809666 cites W2034452688 @default.
- W2022809666 cites W2039689566 @default.
- W2022809666 cites W2040948531 @default.
- W2022809666 cites W2047785766 @default.
- W2022809666 cites W2057037672 @default.
- W2022809666 cites W2057393970 @default.
- W2022809666 cites W2057761469 @default.
- W2022809666 cites W2057980978 @default.
- W2022809666 cites W2064777467 @default.
- W2022809666 cites W2064827759 @default.
- W2022809666 cites W2068108839 @default.
- W2022809666 cites W2070498088 @default.
- W2022809666 cites W2075430894 @default.
- W2022809666 cites W2076629210 @default.
- W2022809666 cites W2080192086 @default.
- W2022809666 cites W2081725175 @default.
- W2022809666 cites W2082450121 @default.
- W2022809666 cites W2093412215 @default.
- W2022809666 cites W2095096040 @default.
- W2022809666 cites W2095721433 @default.
- W2022809666 cites W2097352226 @default.
- W2022809666 cites W2097455345 @default.
- W2022809666 cites W2098581578 @default.
- W2022809666 cites W2100082932 @default.
- W2022809666 cites W2101990532 @default.
- W2022809666 cites W2108973526 @default.
- W2022809666 cites W2132087545 @default.
- W2022809666 cites W2133088039 @default.
- W2022809666 cites W2134740425 @default.
- W2022809666 cites W2144857302 @default.
- W2022809666 cites W2147715333 @default.
- W2022809666 cites W2150068798 @default.
- W2022809666 cites W2161289410 @default.
- W2022809666 cites W2163037191 @default.
- W2022809666 cites W2166574392 @default.
- W2022809666 cites W2167377764 @default.
- W2022809666 cites W2171352566 @default.
- W2022809666 cites W2603822133 @default.
- W2022809666 cites W2963554393 @default.
- W2022809666 cites W3006894810 @default.
- W2022809666 cites W3009364745 @default.
- W2022809666 cites W3023870837 @default.
- W2022809666 cites W3099731122 @default.
- W2022809666 doi "https://doi.org/10.1016/j.physletb.2012.08.029" @default.
- W2022809666 hasPublicationYear "2012" @default.
- W2022809666 type Work @default.
- W2022809666 sameAs 2022809666 @default.
- W2022809666 citedByCount "30" @default.
- W2022809666 countsByYear W20228096662013 @default.
- W2022809666 countsByYear W20228096662014 @default.
- W2022809666 countsByYear W20228096662015 @default.
- W2022809666 countsByYear W20228096662016 @default.
- W2022809666 countsByYear W20228096662017 @default.
- W2022809666 countsByYear W20228096662018 @default.
- W2022809666 countsByYear W20228096662019 @default.
- W2022809666 countsByYear W20228096662020 @default.
- W2022809666 countsByYear W20228096662022 @default.