Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022818183> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2022818183 abstract "Reference resolution is an important task which supports understanding natural language texts, especially in the legal domain, where legal articles are usually long and complicated. This paper focuses on the task of reference resolution in the legal domain, in which we extract references and resolve them to the referenced texts. We propose a four-step framework to deal with the task: mention detection, contextual information extraction, antecedent candidate extraction, and antecedent determination. We also show how machine learning methods can be exploited in each step. The final system achieves 80.06% in the F1 score for detecting references, 85.61% accuracy for resolving them, and 67.02% in the F1 score on the end-to-end setting task on the Japanese National Pension Law corpus. Our work provides promising results for further studies on this interesting task." @default.
- W2022818183 created "2016-06-24" @default.
- W2022818183 creator A5005323032 @default.
- W2022818183 creator A5040245741 @default.
- W2022818183 creator A5090337365 @default.
- W2022818183 date "2013-06-10" @default.
- W2022818183 modified "2023-09-23" @default.
- W2022818183 title "Reference resolution in legal texts" @default.
- W2022818183 cites W1608598145 @default.
- W2022818183 cites W1972019838 @default.
- W2022818183 cites W2035720976 @default.
- W2022818183 cites W2047221353 @default.
- W2022818183 cites W2072823612 @default.
- W2022818183 cites W2131340601 @default.
- W2022818183 cites W2145679919 @default.
- W2022818183 cites W2149956050 @default.
- W2022818183 cites W2156515921 @default.
- W2022818183 cites W2161771536 @default.
- W2022818183 doi "https://doi.org/10.1145/2514601.2514613" @default.
- W2022818183 hasPublicationYear "2013" @default.
- W2022818183 type Work @default.
- W2022818183 sameAs 2022818183 @default.
- W2022818183 citedByCount "6" @default.
- W2022818183 countsByYear W20228181832014 @default.
- W2022818183 countsByYear W20228181832017 @default.
- W2022818183 countsByYear W20228181832019 @default.
- W2022818183 countsByYear W20228181832021 @default.
- W2022818183 crossrefType "proceedings-article" @default.
- W2022818183 hasAuthorship W2022818183A5005323032 @default.
- W2022818183 hasAuthorship W2022818183A5040245741 @default.
- W2022818183 hasAuthorship W2022818183A5090337365 @default.
- W2022818183 hasConcept C12725497 @default.
- W2022818183 hasConcept C127413603 @default.
- W2022818183 hasConcept C134306372 @default.
- W2022818183 hasConcept C138268822 @default.
- W2022818183 hasConcept C138496976 @default.
- W2022818183 hasConcept C154945302 @default.
- W2022818183 hasConcept C15744967 @default.
- W2022818183 hasConcept C17744445 @default.
- W2022818183 hasConcept C195807954 @default.
- W2022818183 hasConcept C199539241 @default.
- W2022818183 hasConcept C201995342 @default.
- W2022818183 hasConcept C204321447 @default.
- W2022818183 hasConcept C23123220 @default.
- W2022818183 hasConcept C2780451532 @default.
- W2022818183 hasConcept C2781256819 @default.
- W2022818183 hasConcept C33923547 @default.
- W2022818183 hasConcept C36503486 @default.
- W2022818183 hasConcept C41008148 @default.
- W2022818183 hasConceptScore W2022818183C12725497 @default.
- W2022818183 hasConceptScore W2022818183C127413603 @default.
- W2022818183 hasConceptScore W2022818183C134306372 @default.
- W2022818183 hasConceptScore W2022818183C138268822 @default.
- W2022818183 hasConceptScore W2022818183C138496976 @default.
- W2022818183 hasConceptScore W2022818183C154945302 @default.
- W2022818183 hasConceptScore W2022818183C15744967 @default.
- W2022818183 hasConceptScore W2022818183C17744445 @default.
- W2022818183 hasConceptScore W2022818183C195807954 @default.
- W2022818183 hasConceptScore W2022818183C199539241 @default.
- W2022818183 hasConceptScore W2022818183C201995342 @default.
- W2022818183 hasConceptScore W2022818183C204321447 @default.
- W2022818183 hasConceptScore W2022818183C23123220 @default.
- W2022818183 hasConceptScore W2022818183C2780451532 @default.
- W2022818183 hasConceptScore W2022818183C2781256819 @default.
- W2022818183 hasConceptScore W2022818183C33923547 @default.
- W2022818183 hasConceptScore W2022818183C36503486 @default.
- W2022818183 hasConceptScore W2022818183C41008148 @default.
- W2022818183 hasFunder F4320334764 @default.
- W2022818183 hasLocation W20228181831 @default.
- W2022818183 hasOpenAccess W2022818183 @default.
- W2022818183 hasPrimaryLocation W20228181831 @default.
- W2022818183 hasRelatedWork W104581431 @default.
- W2022818183 hasRelatedWork W1788528807 @default.
- W2022818183 hasRelatedWork W1975174578 @default.
- W2022818183 hasRelatedWork W1987393432 @default.
- W2022818183 hasRelatedWork W2081647779 @default.
- W2022818183 hasRelatedWork W2368651715 @default.
- W2022818183 hasRelatedWork W2435130738 @default.
- W2022818183 hasRelatedWork W3096231636 @default.
- W2022818183 hasRelatedWork W3107474891 @default.
- W2022818183 hasRelatedWork W3185852197 @default.
- W2022818183 isParatext "false" @default.
- W2022818183 isRetracted "false" @default.
- W2022818183 magId "2022818183" @default.
- W2022818183 workType "article" @default.