Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022821676> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2022821676 abstract "In this paper, we will propose a novel framework of hybridization of Coevolutionary Genetic Algorithm and Machine Learning. The Coevolutionary Genetic Algorithm (CGA) which has already been proposed by Handa et al. consists of two GA populations: the first GA (H-GA) population searches for the solutions in given problems, and the second GA (P-GA) population searches for effective schemata of the H-GA. The CGA adopts the notion of commensalism, a kind of co-evolution. The new hybrid framework incorporates a schema extraction mechanism by Machine Learning techniques into the CGA. Considerable improvement in its search ability is obtained by extracting more efficient and useful schemata from the H-GA population and then by incorporating those extracted schemata into the P-GA. We will examine and compare two kinds of machine learning techniques in extracting schema information: C4.5 and CN2. Several computational simulations on multidimensional knapsack problems, constraint satisfaction problems and function optimization problems will reveal the effectiveness of the proposed methods." @default.
- W2022821676 created "2016-06-24" @default.
- W2022821676 creator A5017773359 @default.
- W2022821676 creator A5037064288 @default.
- W2022821676 creator A5046811190 @default.
- W2022821676 creator A5085222374 @default.
- W2022821676 date "2002-03-01" @default.
- W2022821676 modified "2023-09-24" @default.
- W2022821676 title "A NOVEL HYBRID FRAMEWORK OF COEVOLUTIONARY GA AND MACHINE LEARNING" @default.
- W2022821676 cites W2781492915 @default.
- W2022821676 doi "https://doi.org/10.1142/s1469026802000415" @default.
- W2022821676 hasPublicationYear "2002" @default.
- W2022821676 type Work @default.
- W2022821676 sameAs 2022821676 @default.
- W2022821676 citedByCount "11" @default.
- W2022821676 countsByYear W20228216762012 @default.
- W2022821676 countsByYear W20228216762014 @default.
- W2022821676 countsByYear W20228216762017 @default.
- W2022821676 crossrefType "journal-article" @default.
- W2022821676 hasAuthorship W2022821676A5017773359 @default.
- W2022821676 hasAuthorship W2022821676A5037064288 @default.
- W2022821676 hasAuthorship W2022821676A5046811190 @default.
- W2022821676 hasAuthorship W2022821676A5085222374 @default.
- W2022821676 hasConcept C113138325 @default.
- W2022821676 hasConcept C11413529 @default.
- W2022821676 hasConcept C119857082 @default.
- W2022821676 hasConcept C144024400 @default.
- W2022821676 hasConcept C149923435 @default.
- W2022821676 hasConcept C154945302 @default.
- W2022821676 hasConcept C2524010 @default.
- W2022821676 hasConcept C2776036281 @default.
- W2022821676 hasConcept C2908647359 @default.
- W2022821676 hasConcept C33923547 @default.
- W2022821676 hasConcept C41008148 @default.
- W2022821676 hasConcept C52146309 @default.
- W2022821676 hasConcept C8880873 @default.
- W2022821676 hasConceptScore W2022821676C113138325 @default.
- W2022821676 hasConceptScore W2022821676C11413529 @default.
- W2022821676 hasConceptScore W2022821676C119857082 @default.
- W2022821676 hasConceptScore W2022821676C144024400 @default.
- W2022821676 hasConceptScore W2022821676C149923435 @default.
- W2022821676 hasConceptScore W2022821676C154945302 @default.
- W2022821676 hasConceptScore W2022821676C2524010 @default.
- W2022821676 hasConceptScore W2022821676C2776036281 @default.
- W2022821676 hasConceptScore W2022821676C2908647359 @default.
- W2022821676 hasConceptScore W2022821676C33923547 @default.
- W2022821676 hasConceptScore W2022821676C41008148 @default.
- W2022821676 hasConceptScore W2022821676C52146309 @default.
- W2022821676 hasConceptScore W2022821676C8880873 @default.
- W2022821676 hasLocation W20228216761 @default.
- W2022821676 hasOpenAccess W2022821676 @default.
- W2022821676 hasPrimaryLocation W20228216761 @default.
- W2022821676 hasRelatedWork W1483032479 @default.
- W2022821676 hasRelatedWork W1483321622 @default.
- W2022821676 hasRelatedWork W1503423383 @default.
- W2022821676 hasRelatedWork W1508143493 @default.
- W2022821676 hasRelatedWork W1521924303 @default.
- W2022821676 hasRelatedWork W1539630498 @default.
- W2022821676 hasRelatedWork W1549206909 @default.
- W2022821676 hasRelatedWork W1551023359 @default.
- W2022821676 hasRelatedWork W1559348690 @default.
- W2022821676 hasRelatedWork W1570339637 @default.
- W2022821676 hasRelatedWork W1587104749 @default.
- W2022821676 hasRelatedWork W165063463 @default.
- W2022821676 hasRelatedWork W1766446388 @default.
- W2022821676 hasRelatedWork W1894425187 @default.
- W2022821676 hasRelatedWork W1988526212 @default.
- W2022821676 hasRelatedWork W2006169648 @default.
- W2022821676 hasRelatedWork W2063876526 @default.
- W2022821676 hasRelatedWork W2158556237 @default.
- W2022821676 hasRelatedWork W234309937 @default.
- W2022821676 hasRelatedWork W2542558320 @default.
- W2022821676 isParatext "false" @default.
- W2022821676 isRetracted "false" @default.
- W2022821676 magId "2022821676" @default.
- W2022821676 workType "article" @default.