Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022822029> ?p ?o ?g. }
- W2022822029 endingPage "215" @default.
- W2022822029 startingPage "201" @default.
- W2022822029 abstract "In their influential Psychological Review article, Bogacz, Brown, Moehlis, Holmes, and Cohen (2006) discussed optimal decision making as accomplished by the drift diffusion model (DDM). The authors showed that neural inhibition models, such as the leaky competing accumulator model (LCA) and the feedforward inhibition model (FFI), can mimic the DDM and accomplish optimal decision making. Here we show that these conclusions depend on how the models handle negative activation values and (for the LCA) across-trial variability in response conservativeness. Negative neural activations are undesirable for both neurophysiological and mathematical reasons. However, when negative activations are truncated to 0, the equivalence to the DDM is lost. Simulations show that this concern has practical ramifications: the DDM generally outperforms truncated versions of the LCA and the FFI, and the parameter estimates from the neural models can no longer be mapped onto those of the DDM in a simple fashion. We show that for both models, truncation may be avoided by assuming a baseline activity for each accumulator. This solution allows the LCA to approximate the DDM and the FFI to be identical to the DDM." @default.
- W2022822029 created "2016-06-24" @default.
- W2022822029 creator A5023033299 @default.
- W2022822029 creator A5050541115 @default.
- W2022822029 creator A5074616217 @default.
- W2022822029 date "2012-01-01" @default.
- W2022822029 modified "2023-10-18" @default.
- W2022822029 title "Optimal decision making in neural inhibition models." @default.
- W2022822029 cites W1593056665 @default.
- W2022822029 cites W1901472381 @default.
- W2022822029 cites W1938730539 @default.
- W2022822029 cites W1943665722 @default.
- W2022822029 cites W1957364793 @default.
- W2022822029 cites W1970035964 @default.
- W2022822029 cites W1973990532 @default.
- W2022822029 cites W1988520084 @default.
- W2022822029 cites W1990119533 @default.
- W2022822029 cites W1992230893 @default.
- W2022822029 cites W1992896338 @default.
- W2022822029 cites W1993710471 @default.
- W2022822029 cites W1996396329 @default.
- W2022822029 cites W1997173667 @default.
- W2022822029 cites W2000444105 @default.
- W2022822029 cites W2001498147 @default.
- W2022822029 cites W2002824768 @default.
- W2022822029 cites W2003708768 @default.
- W2022822029 cites W2006388199 @default.
- W2022822029 cites W2012037220 @default.
- W2022822029 cites W2020220682 @default.
- W2022822029 cites W2020538926 @default.
- W2022822029 cites W2023708126 @default.
- W2022822029 cites W2045127522 @default.
- W2022822029 cites W2045968318 @default.
- W2022822029 cites W2048266902 @default.
- W2022822029 cites W2052646826 @default.
- W2022822029 cites W2056719047 @default.
- W2022822029 cites W2059511681 @default.
- W2022822029 cites W2060715457 @default.
- W2022822029 cites W2062322739 @default.
- W2022822029 cites W2066931620 @default.
- W2022822029 cites W2069454391 @default.
- W2022822029 cites W2071197071 @default.
- W2022822029 cites W2079686476 @default.
- W2022822029 cites W2080082944 @default.
- W2022822029 cites W2095688342 @default.
- W2022822029 cites W2098205603 @default.
- W2022822029 cites W2099567232 @default.
- W2022822029 cites W2100476792 @default.
- W2022822029 cites W2101254766 @default.
- W2022822029 cites W2102673158 @default.
- W2022822029 cites W2108021503 @default.
- W2022822029 cites W2110150104 @default.
- W2022822029 cites W2118009483 @default.
- W2022822029 cites W2118366490 @default.
- W2022822029 cites W2122066429 @default.
- W2022822029 cites W2132130600 @default.
- W2022822029 cites W2133877521 @default.
- W2022822029 cites W2136582516 @default.
- W2022822029 cites W2142595182 @default.
- W2022822029 cites W2144095870 @default.
- W2022822029 cites W2147398967 @default.
- W2022822029 cites W2149225761 @default.
- W2022822029 cites W2150380514 @default.
- W2022822029 cites W2151783777 @default.
- W2022822029 cites W2154164802 @default.
- W2022822029 cites W2156743548 @default.
- W2022822029 cites W2157156222 @default.
- W2022822029 cites W2158130856 @default.
- W2022822029 cites W2165943343 @default.
- W2022822029 cites W2167987951 @default.
- W2022822029 cites W2168132266 @default.
- W2022822029 cites W2168815228 @default.
- W2022822029 cites W2170907775 @default.
- W2022822029 cites W2271263590 @default.
- W2022822029 cites W2416722675 @default.
- W2022822029 cites W24290523 @default.
- W2022822029 cites W2974222084 @default.
- W2022822029 cites W3133354213 @default.
- W2022822029 cites W3167752473 @default.
- W2022822029 doi "https://doi.org/10.1037/a0026275" @default.
- W2022822029 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22103672" @default.
- W2022822029 hasPublicationYear "2012" @default.
- W2022822029 type Work @default.
- W2022822029 sameAs 2022822029 @default.
- W2022822029 citedByCount "34" @default.
- W2022822029 countsByYear W20228220292012 @default.
- W2022822029 countsByYear W20228220292013 @default.
- W2022822029 countsByYear W20228220292014 @default.
- W2022822029 countsByYear W20228220292015 @default.
- W2022822029 countsByYear W20228220292016 @default.
- W2022822029 countsByYear W20228220292017 @default.
- W2022822029 countsByYear W20228220292018 @default.
- W2022822029 countsByYear W20228220292019 @default.
- W2022822029 countsByYear W20228220292021 @default.
- W2022822029 countsByYear W20228220292022 @default.
- W2022822029 countsByYear W20228220292023 @default.
- W2022822029 crossrefType "journal-article" @default.
- W2022822029 hasAuthorship W2022822029A5023033299 @default.