Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022836721> ?p ?o ?g. }
- W2022836721 endingPage "90" @default.
- W2022836721 startingPage "53" @default.
- W2022836721 abstract "For the Wiener–Hopf factorization of 2×2 matrix functions G defined on a closed Carleson curve Γ, transformations G↦UGV where U and V are invertible rational 2×2 matrix functions are important. In the first part of this paper we establish a classification scheme for 2×2 matrix functions, which is based on such transformations. We determine invariants under these transformations and describe those matrix functions which can be transformed to triangular or Daniele–Khrapkov form. In the second part we consider special rational transformations and study the same problem. For instance, we consider transformations where U and V are rational matrix functions that are analytic and invertible on an open neighborhood of Γ. In the more complicated, but for factorization theory important case where U and V are rational matrix functions that are analytic and invertible on an open neighborhood of the closure of the domain inside of Γ or outside of Γ, respectively, the answer is slightly different." @default.
- W2022836721 created "2016-06-24" @default.
- W2022836721 creator A5002342132 @default.
- W2022836721 creator A5058912227 @default.
- W2022836721 date "2002-09-01" @default.
- W2022836721 modified "2023-09-27" @default.
- W2022836721 title "Transformation techniques towards the factorization of non-rational 2×2 matrix functions" @default.
- W2022836721 cites W1593819917 @default.
- W2022836721 cites W1679552097 @default.
- W2022836721 cites W1965693222 @default.
- W2022836721 cites W1968937881 @default.
- W2022836721 cites W1996700540 @default.
- W2022836721 cites W2006502019 @default.
- W2022836721 cites W2011997564 @default.
- W2022836721 cites W2018769162 @default.
- W2022836721 cites W2023822220 @default.
- W2022836721 cites W2036663323 @default.
- W2022836721 cites W2040149714 @default.
- W2022836721 cites W2045407494 @default.
- W2022836721 cites W2061814596 @default.
- W2022836721 cites W2062514090 @default.
- W2022836721 cites W2066062209 @default.
- W2022836721 cites W2066822765 @default.
- W2022836721 cites W2075598226 @default.
- W2022836721 cites W2075622334 @default.
- W2022836721 cites W2086506205 @default.
- W2022836721 cites W2089135434 @default.
- W2022836721 cites W2093495510 @default.
- W2022836721 cites W2095371949 @default.
- W2022836721 cites W2097070007 @default.
- W2022836721 cites W2133729300 @default.
- W2022836721 cites W2319240740 @default.
- W2022836721 cites W2602960984 @default.
- W2022836721 cites W4238478355 @default.
- W2022836721 cites W4250081984 @default.
- W2022836721 cites W993595443 @default.
- W2022836721 doi "https://doi.org/10.1016/s0024-3795(02)00288-4" @default.
- W2022836721 hasPublicationYear "2002" @default.
- W2022836721 type Work @default.
- W2022836721 sameAs 2022836721 @default.
- W2022836721 citedByCount "31" @default.
- W2022836721 countsByYear W20228367212012 @default.
- W2022836721 countsByYear W20228367212013 @default.
- W2022836721 countsByYear W20228367212014 @default.
- W2022836721 countsByYear W20228367212015 @default.
- W2022836721 countsByYear W20228367212016 @default.
- W2022836721 countsByYear W20228367212018 @default.
- W2022836721 countsByYear W20228367212019 @default.
- W2022836721 countsByYear W20228367212020 @default.
- W2022836721 countsByYear W20228367212021 @default.
- W2022836721 crossrefType "journal-article" @default.
- W2022836721 hasAuthorship W2022836721A5002342132 @default.
- W2022836721 hasAuthorship W2022836721A5058912227 @default.
- W2022836721 hasBestOaLocation W20228367211 @default.
- W2022836721 hasConcept C104317684 @default.
- W2022836721 hasConcept C106487976 @default.
- W2022836721 hasConcept C11413529 @default.
- W2022836721 hasConcept C118615104 @default.
- W2022836721 hasConcept C121332964 @default.
- W2022836721 hasConcept C136119220 @default.
- W2022836721 hasConcept C146834321 @default.
- W2022836721 hasConcept C158693339 @default.
- W2022836721 hasConcept C159985019 @default.
- W2022836721 hasConcept C162324750 @default.
- W2022836721 hasConcept C185592680 @default.
- W2022836721 hasConcept C187834632 @default.
- W2022836721 hasConcept C192562407 @default.
- W2022836721 hasConcept C202444582 @default.
- W2022836721 hasConcept C204241405 @default.
- W2022836721 hasConcept C33923547 @default.
- W2022836721 hasConcept C34447519 @default.
- W2022836721 hasConcept C4263655 @default.
- W2022836721 hasConcept C54848796 @default.
- W2022836721 hasConcept C55493867 @default.
- W2022836721 hasConcept C62520636 @default.
- W2022836721 hasConcept C75190567 @default.
- W2022836721 hasConcept C96442724 @default.
- W2022836721 hasConceptScore W2022836721C104317684 @default.
- W2022836721 hasConceptScore W2022836721C106487976 @default.
- W2022836721 hasConceptScore W2022836721C11413529 @default.
- W2022836721 hasConceptScore W2022836721C118615104 @default.
- W2022836721 hasConceptScore W2022836721C121332964 @default.
- W2022836721 hasConceptScore W2022836721C136119220 @default.
- W2022836721 hasConceptScore W2022836721C146834321 @default.
- W2022836721 hasConceptScore W2022836721C158693339 @default.
- W2022836721 hasConceptScore W2022836721C159985019 @default.
- W2022836721 hasConceptScore W2022836721C162324750 @default.
- W2022836721 hasConceptScore W2022836721C185592680 @default.
- W2022836721 hasConceptScore W2022836721C187834632 @default.
- W2022836721 hasConceptScore W2022836721C192562407 @default.
- W2022836721 hasConceptScore W2022836721C202444582 @default.
- W2022836721 hasConceptScore W2022836721C204241405 @default.
- W2022836721 hasConceptScore W2022836721C33923547 @default.
- W2022836721 hasConceptScore W2022836721C34447519 @default.
- W2022836721 hasConceptScore W2022836721C4263655 @default.
- W2022836721 hasConceptScore W2022836721C54848796 @default.
- W2022836721 hasConceptScore W2022836721C55493867 @default.
- W2022836721 hasConceptScore W2022836721C62520636 @default.