Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022847550> ?p ?o ?g. }
- W2022847550 endingPage "2135" @default.
- W2022847550 startingPage "2123" @default.
- W2022847550 abstract "Boreal summer intraseasonal oscillation (BSISO) is one of the dominant modes of intraseasonal variability of the tropical climate system, which has fundamental impacts on regional summer monsoons, tropical storms, and extra-tropical climate variations. Due to its distinctive characteristics, a specific metric for characterizing observed BSISO evolution and assessing numerical models’ simulations has previously been proposed (Lee et al. in Clim Dyn 40:493–509, 2013). However, the current dynamical model’s prediction skill and predictability have not been investigated in a multi-model framework. Using six coupled models in the Intraseasonal Variability Hindcast Experiment project, the predictability estimates and prediction skill of BSISO are examined. The BSISO predictability is estimated by the forecast lead day when mean forecast error becomes as large as the mean signal under the perfect model assumption. Applying the signal-to-error ratio method and using ensemble-mean approach, we found that the multi-model mean BSISO predictability estimate and prediction skill with strong initial amplitude (about 10 % higher than the mean initial amplitude) are about 45 and 22 days, respectively, which are comparable with the corresponding counterparts for Madden–Julian Oscillation during boreal winter (Neena et al. in J Clim 27:4531–4543, 2014a). The significantly lower BSISO prediction skill compared with its predictability indicates considerable room for improvement of the dynamical BSISO prediction. The estimated predictability limit is independent on its initial amplitude, but the models’ prediction skills for strong initial amplitude is 6 days higher than the corresponding skill with the weak initial condition (about 15 % less than mean initial amplitude), suggesting the importance of using accurate initial conditions. The BSISO predictability and prediction skill are phase and season-dependent, but the degree of dependency varies with the models. It is important to note that the estimation of prediction skill depends on the methods that generate initial ensembles. Our analysis indicates that a better dispersion of ensemble members can considerably improve the ensemble mean prediction skills." @default.
- W2022847550 created "2016-06-24" @default.
- W2022847550 creator A5001848554 @default.
- W2022847550 creator A5007801035 @default.
- W2022847550 creator A5029640818 @default.
- W2022847550 creator A5031845475 @default.
- W2022847550 creator A5033732336 @default.
- W2022847550 date "2015-03-14" @default.
- W2022847550 modified "2023-10-15" @default.
- W2022847550 title "Predictability and prediction skill of the boreal summer intraseasonal oscillation in the Intraseasonal Variability Hindcast Experiment" @default.
- W2022847550 cites W1966058116 @default.
- W2022847550 cites W1972942025 @default.
- W2022847550 cites W1974556951 @default.
- W2022847550 cites W1977455467 @default.
- W2022847550 cites W1994659182 @default.
- W2022847550 cites W1998827813 @default.
- W2022847550 cites W2002378211 @default.
- W2022847550 cites W2007239278 @default.
- W2022847550 cites W2012241806 @default.
- W2022847550 cites W2022894578 @default.
- W2022847550 cites W2027983447 @default.
- W2022847550 cites W2032186566 @default.
- W2022847550 cites W2037665792 @default.
- W2022847550 cites W2038782284 @default.
- W2022847550 cites W2039483530 @default.
- W2022847550 cites W2043236329 @default.
- W2022847550 cites W2049558028 @default.
- W2022847550 cites W2050635873 @default.
- W2022847550 cites W2060172488 @default.
- W2022847550 cites W2062358525 @default.
- W2022847550 cites W2070225830 @default.
- W2022847550 cites W2071675235 @default.
- W2022847550 cites W2074554182 @default.
- W2022847550 cites W2080837504 @default.
- W2022847550 cites W2092268278 @default.
- W2022847550 cites W2098251836 @default.
- W2022847550 cites W2102731051 @default.
- W2022847550 cites W2103674216 @default.
- W2022847550 cites W2105929787 @default.
- W2022847550 cites W2109364173 @default.
- W2022847550 cites W2112477601 @default.
- W2022847550 cites W2113930597 @default.
- W2022847550 cites W2115690605 @default.
- W2022847550 cites W2118993524 @default.
- W2022847550 cites W2119658783 @default.
- W2022847550 cites W2120599362 @default.
- W2022847550 cites W2125529718 @default.
- W2022847550 cites W2125595191 @default.
- W2022847550 cites W2126434995 @default.
- W2022847550 cites W2128193726 @default.
- W2022847550 cites W2130621810 @default.
- W2022847550 cites W2133038878 @default.
- W2022847550 cites W2133144322 @default.
- W2022847550 cites W2136647178 @default.
- W2022847550 cites W2138666267 @default.
- W2022847550 cites W2140132045 @default.
- W2022847550 cites W2143292568 @default.
- W2022847550 cites W2146955287 @default.
- W2022847550 cites W2154632201 @default.
- W2022847550 cites W2160917372 @default.
- W2022847550 cites W2165655157 @default.
- W2022847550 cites W2167069495 @default.
- W2022847550 cites W2172524244 @default.
- W2022847550 cites W2174034357 @default.
- W2022847550 cites W2174610524 @default.
- W2022847550 cites W2176050019 @default.
- W2022847550 cites W2177077945 @default.
- W2022847550 cites W2177669464 @default.
- W2022847550 cites W2179251221 @default.
- W2022847550 cites W2183568114 @default.
- W2022847550 doi "https://doi.org/10.1007/s00382-014-2461-5" @default.
- W2022847550 hasPublicationYear "2015" @default.
- W2022847550 type Work @default.
- W2022847550 sameAs 2022847550 @default.
- W2022847550 citedByCount "52" @default.
- W2022847550 countsByYear W20228475502015 @default.
- W2022847550 countsByYear W20228475502016 @default.
- W2022847550 countsByYear W20228475502017 @default.
- W2022847550 countsByYear W20228475502018 @default.
- W2022847550 countsByYear W20228475502019 @default.
- W2022847550 countsByYear W20228475502020 @default.
- W2022847550 countsByYear W20228475502021 @default.
- W2022847550 countsByYear W20228475502022 @default.
- W2022847550 countsByYear W20228475502023 @default.
- W2022847550 crossrefType "journal-article" @default.
- W2022847550 hasAuthorship W2022847550A5001848554 @default.
- W2022847550 hasAuthorship W2022847550A5007801035 @default.
- W2022847550 hasAuthorship W2022847550A5029640818 @default.
- W2022847550 hasAuthorship W2022847550A5031845475 @default.
- W2022847550 hasAuthorship W2022847550A5033732336 @default.
- W2022847550 hasBestOaLocation W20228475501 @default.
- W2022847550 hasConcept C105795698 @default.
- W2022847550 hasConcept C10899652 @default.
- W2022847550 hasConcept C117381296 @default.
- W2022847550 hasConcept C121332964 @default.
- W2022847550 hasConcept C127313418 @default.
- W2022847550 hasConcept C153294291 @default.
- W2022847550 hasConcept C170061395 @default.