Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022849643> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2022849643 abstract "Web search engines now serve as essential assistant to help users make decisions in different aspects. Delivering correct and impartial information is a crucial functionality for search engines as any false information may lead to unwise decision and thus undesirable consequences. Unfortunately, a recent study revealed that Web search engines tend to provide biased information with most results supporting users' beliefs conveyed in queries regardless of the truth.In this paper we propose to alleviate bias in Web search through predicting the topical polarity of documents, which is the overall tendency of one document regarding whether it supports or disapproves the belief in query. By applying the prediction to balance search results, users would receive less biased information and therefore make wiser decision. To achieve this goal, we propose a novel textual segment extraction method to distill and generate document feature representation, and leverage convolution neural network, an effective deep learning approach, to predict topical polarity of documents. We conduct extensive experiments on a set of queries with medical indents and demonstrate that our model performs empirically well on identifying topical polarity with satisfying accuracy. To our best knowledge, our work is the first on investigating the mitigation of bias in Web search and could provide directions on future research." @default.
- W2022849643 created "2016-06-24" @default.
- W2022849643 creator A5046565976 @default.
- W2022849643 creator A5061528283 @default.
- W2022849643 creator A5072983516 @default.
- W2022849643 date "2015-09-27" @default.
- W2022849643 modified "2023-09-28" @default.
- W2022849643 title "Towards Less Biased Web Search" @default.
- W2022849643 cites W1832693441 @default.
- W2022849643 cites W1994361353 @default.
- W2022849643 cites W2023985699 @default.
- W2022849643 cites W2088189834 @default.
- W2022849643 cites W2112796928 @default.
- W2022849643 cites W2134747565 @default.
- W2022849643 cites W2148869009 @default.
- W2022849643 cites W2159205954 @default.
- W2022849643 cites W4205184193 @default.
- W2022849643 cites W4206671592 @default.
- W2022849643 doi "https://doi.org/10.1145/2808194.2809476" @default.
- W2022849643 hasPublicationYear "2015" @default.
- W2022849643 type Work @default.
- W2022849643 sameAs 2022849643 @default.
- W2022849643 citedByCount "2" @default.
- W2022849643 countsByYear W20228496432017 @default.
- W2022849643 countsByYear W20228496432023 @default.
- W2022849643 crossrefType "proceedings-article" @default.
- W2022849643 hasAuthorship W2022849643A5046565976 @default.
- W2022849643 hasAuthorship W2022849643A5061528283 @default.
- W2022849643 hasAuthorship W2022849643A5072983516 @default.
- W2022849643 hasConcept C119857082 @default.
- W2022849643 hasConcept C136764020 @default.
- W2022849643 hasConcept C153083717 @default.
- W2022849643 hasConcept C177264268 @default.
- W2022849643 hasConcept C199360897 @default.
- W2022849643 hasConcept C23123220 @default.
- W2022849643 hasConcept C2522767166 @default.
- W2022849643 hasConcept C41008148 @default.
- W2022849643 hasConcept C97854310 @default.
- W2022849643 hasConceptScore W2022849643C119857082 @default.
- W2022849643 hasConceptScore W2022849643C136764020 @default.
- W2022849643 hasConceptScore W2022849643C153083717 @default.
- W2022849643 hasConceptScore W2022849643C177264268 @default.
- W2022849643 hasConceptScore W2022849643C199360897 @default.
- W2022849643 hasConceptScore W2022849643C23123220 @default.
- W2022849643 hasConceptScore W2022849643C2522767166 @default.
- W2022849643 hasConceptScore W2022849643C41008148 @default.
- W2022849643 hasConceptScore W2022849643C97854310 @default.
- W2022849643 hasFunder F4320306076 @default.
- W2022849643 hasLocation W20228496431 @default.
- W2022849643 hasOpenAccess W2022849643 @default.
- W2022849643 hasPrimaryLocation W20228496431 @default.
- W2022849643 hasRelatedWork W118589780 @default.
- W2022849643 hasRelatedWork W1517384908 @default.
- W2022849643 hasRelatedWork W170655053 @default.
- W2022849643 hasRelatedWork W2042949695 @default.
- W2022849643 hasRelatedWork W2050961956 @default.
- W2022849643 hasRelatedWork W2146832283 @default.
- W2022849643 hasRelatedWork W2156982127 @default.
- W2022849643 hasRelatedWork W2186666332 @default.
- W2022849643 hasRelatedWork W2186976797 @default.
- W2022849643 hasRelatedWork W2188652105 @default.
- W2022849643 hasRelatedWork W2214614887 @default.
- W2022849643 hasRelatedWork W2227019842 @default.
- W2022849643 hasRelatedWork W2546347449 @default.
- W2022849643 hasRelatedWork W2550267965 @default.
- W2022849643 hasRelatedWork W2998096503 @default.
- W2022849643 hasRelatedWork W2185236059 @default.
- W2022849643 hasRelatedWork W2188764903 @default.
- W2022849643 hasRelatedWork W2189421270 @default.
- W2022849643 hasRelatedWork W2560283555 @default.
- W2022849643 hasRelatedWork W2607617335 @default.
- W2022849643 isParatext "false" @default.
- W2022849643 isRetracted "false" @default.
- W2022849643 magId "2022849643" @default.
- W2022849643 workType "article" @default.