Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022853792> ?p ?o ?g. }
- W2022853792 endingPage "11" @default.
- W2022853792 startingPage "1" @default.
- W2022853792 abstract "Coronary artery disease (CAD) is the leading causes of deaths in the world. The differentiation of syndrome (ZHENG) is the criterion of diagnosis and therapeutic in TCM. Therefore, syndrome prediction in silico can be improving the performance of treatment. In this paper, we present a Bayesian network framework to construct a high-confidence syndrome predictor based on the optimum subset, that is, collected by Support Vector Machine (SVM) feature selection. Syndrome of CAD can be divided into asthenia and sthenia syndromes. According to the hierarchical characteristics of syndrome, we firstly label every case three types of syndrome (asthenia, sthenia, or both) to solve several syndromes with some patients. On basis of the three syndromes’ classes, we design SVM feature selection to achieve the optimum symptom subset and compare this subset with Markov blanket feature select using ROC. Using this subset, the six predictors of CAD’s syndrome are constructed by the Bayesian network technique. We also design Naïve Bayes, C4.5 Logistic, Radial basis function (RBF) network compared with Bayesian network. In a conclusion, the Bayesian network method based on the optimum symptoms shows a practical method to predict six syndromes of CAD in TCM." @default.
- W2022853792 created "2016-06-24" @default.
- W2022853792 creator A5019541846 @default.
- W2022853792 creator A5028712129 @default.
- W2022853792 creator A5036207827 @default.
- W2022853792 creator A5037959654 @default.
- W2022853792 creator A5044059518 @default.
- W2022853792 creator A5053574928 @default.
- W2022853792 creator A5069906360 @default.
- W2022853792 creator A5071675435 @default.
- W2022853792 creator A5087827150 @default.
- W2022853792 creator A5089948952 @default.
- W2022853792 date "2012-01-01" @default.
- W2022853792 modified "2023-10-17" @default.
- W2022853792 title "In SilicoSyndrome Prediction for Coronary Artery Disease in Traditional Chinese Medicine" @default.
- W2022853792 cites W1967731390 @default.
- W2022853792 cites W1969271876 @default.
- W2022853792 cites W1976394429 @default.
- W2022853792 cites W1984495457 @default.
- W2022853792 cites W1986908923 @default.
- W2022853792 cites W2008499150 @default.
- W2022853792 cites W2017337590 @default.
- W2022853792 cites W2019683663 @default.
- W2022853792 cites W2029787960 @default.
- W2022853792 cites W2030958001 @default.
- W2022853792 cites W2062930337 @default.
- W2022853792 cites W2095292601 @default.
- W2022853792 cites W2123895705 @default.
- W2022853792 cites W2133990480 @default.
- W2022853792 cites W2139212933 @default.
- W2022853792 cites W2146739259 @default.
- W2022853792 cites W2157825442 @default.
- W2022853792 cites W2158698691 @default.
- W2022853792 cites W2162883187 @default.
- W2022853792 doi "https://doi.org/10.1155/2012/142584" @default.
- W2022853792 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3328975" @default.
- W2022853792 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22567030" @default.
- W2022853792 hasPublicationYear "2012" @default.
- W2022853792 type Work @default.
- W2022853792 sameAs 2022853792 @default.
- W2022853792 citedByCount "12" @default.
- W2022853792 countsByYear W20228537922013 @default.
- W2022853792 countsByYear W20228537922014 @default.
- W2022853792 countsByYear W20228537922016 @default.
- W2022853792 countsByYear W20228537922017 @default.
- W2022853792 countsByYear W20228537922020 @default.
- W2022853792 countsByYear W20228537922021 @default.
- W2022853792 countsByYear W20228537922022 @default.
- W2022853792 crossrefType "journal-article" @default.
- W2022853792 hasAuthorship W2022853792A5019541846 @default.
- W2022853792 hasAuthorship W2022853792A5028712129 @default.
- W2022853792 hasAuthorship W2022853792A5036207827 @default.
- W2022853792 hasAuthorship W2022853792A5037959654 @default.
- W2022853792 hasAuthorship W2022853792A5044059518 @default.
- W2022853792 hasAuthorship W2022853792A5053574928 @default.
- W2022853792 hasAuthorship W2022853792A5069906360 @default.
- W2022853792 hasAuthorship W2022853792A5071675435 @default.
- W2022853792 hasAuthorship W2022853792A5087827150 @default.
- W2022853792 hasAuthorship W2022853792A5089948952 @default.
- W2022853792 hasBestOaLocation W20228537921 @default.
- W2022853792 hasConcept C107673813 @default.
- W2022853792 hasConcept C119857082 @default.
- W2022853792 hasConcept C12267149 @default.
- W2022853792 hasConcept C123867240 @default.
- W2022853792 hasConcept C126322002 @default.
- W2022853792 hasConcept C127413603 @default.
- W2022853792 hasConcept C138885662 @default.
- W2022853792 hasConcept C148483581 @default.
- W2022853792 hasConcept C151956035 @default.
- W2022853792 hasConcept C153180895 @default.
- W2022853792 hasConcept C154945302 @default.
- W2022853792 hasConcept C163836022 @default.
- W2022853792 hasConcept C189973286 @default.
- W2022853792 hasConcept C194789388 @default.
- W2022853792 hasConcept C199639397 @default.
- W2022853792 hasConcept C207201462 @default.
- W2022853792 hasConcept C2776401178 @default.
- W2022853792 hasConcept C2777698277 @default.
- W2022853792 hasConcept C2778213512 @default.
- W2022853792 hasConcept C33724603 @default.
- W2022853792 hasConcept C41008148 @default.
- W2022853792 hasConcept C41895202 @default.
- W2022853792 hasConcept C500558357 @default.
- W2022853792 hasConcept C52001869 @default.
- W2022853792 hasConcept C71924100 @default.
- W2022853792 hasConcept C98763669 @default.
- W2022853792 hasConceptScore W2022853792C107673813 @default.
- W2022853792 hasConceptScore W2022853792C119857082 @default.
- W2022853792 hasConceptScore W2022853792C12267149 @default.
- W2022853792 hasConceptScore W2022853792C123867240 @default.
- W2022853792 hasConceptScore W2022853792C126322002 @default.
- W2022853792 hasConceptScore W2022853792C127413603 @default.
- W2022853792 hasConceptScore W2022853792C138885662 @default.
- W2022853792 hasConceptScore W2022853792C148483581 @default.
- W2022853792 hasConceptScore W2022853792C151956035 @default.
- W2022853792 hasConceptScore W2022853792C153180895 @default.
- W2022853792 hasConceptScore W2022853792C154945302 @default.
- W2022853792 hasConceptScore W2022853792C163836022 @default.