Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022854893> ?p ?o ?g. }
- W2022854893 endingPage "92" @default.
- W2022854893 startingPage "71" @default.
- W2022854893 abstract "Several perennial, deciduous, as well as evergreen fruit crops develop symptoms of iron deficiency—interveinal chlorosis of apical leaves—when cultivated in calcareous and alkaline soils. Under these conditions fruit yield and quality is depressed in the current year and fruit buds poorly develop for following year fruiting. This paper reviews the main fundamental and applied aspects of iron (Fe) nutrition of deciduous fruit crops and grapevine and discusses the possible development of sustainable Fe nutrition management in orchard and vineyard ecosystems. Cultivated grapevines and most deciduous fruit trees are made up of two separate genotypes the cultivar and the rootstock, providing the root system to the tree. The effect of the rootstock on scion tolerance of Fe chlorosis is discussed in terms of biochemical responses of the roots to acquire iron from the soil. Symptoms of iron chlorosis in orchards and vineyards are usually more frequent in spring when shoot growth is rapid and bicarbonate concentration in the soil solution buffers soil pH in the rhizosphere and root apoplast. Since the solubility of Fe-oxides is pH dependent, under alkaline and calcareous soils inorganic Fe availability is far below that required to satisfy plant demand, so major role on Fe nutrition of trees is likely played by the iron chelated by microbial siderophores, chelated by phytosiderophores (released into the soil by graminaceous species) and complexed by organic matter. As most fruit tree species belong to Strategy I-based plants (which do not produce phytosiderophores in their roots) Fe uptake is preceded by a reduction step from Fe3+ to Fe2+. The role of ferric chelate reductase and proton pump activities in Fe uptake and the possible adoption of these measurements for screening procedure in selecting Fe chlorosis tolerant rootstocks are discussed. In a chlorotic leaf the existence of Fe pools which are somehow inactivated has been demonstrated, suggesting that part of the Fe coming from the roots does not pass the leaf plasmamembrane and may be confined to the apoplast; the reasons and the importance for inactivation of Fe in the apoplast are discussed. The use of Fe chlorosis tolerant genotypes as rootstocks in orchards and vineyards represents a reliable solution to prevent iron chlorosis; in some species, however, available Fe chlorosis resistant rootstocks are not very attractive from an agronomic point of view since they often induce excessive growth of the scion and reduce fruit yields. As most fruit tree crops and grapes are high value commodities, in many countries growers are often willing to apply synthetic Fe chelates to cure or to prevent the occurrence of Fe deficiency. The application of iron chelates does not represent a sustainable way to prevent or cure iron chlorosis because of to their costs and of the environmental risks associated with their use. Since Fe chelates were introduced, little research on alternative means for controlling the chlorosis has been performed. Sustainable management of Fe nutrition in orchards and vineyards should include all genetical and agronomical means in order to naturally enhance Fe availability in the soil and in the plant. Special attention should be given to soil analysis and to prevention measures carried out before planting. Alternatives to iron chelates are being developed and in the future they should be included into the routine practices of managing fruit trees and grapevine under Integrated Production and Organic Farming." @default.
- W2022854893 created "2016-06-24" @default.
- W2022854893 creator A5016566943 @default.
- W2022854893 creator A5034500086 @default.
- W2022854893 date "2001-10-01" @default.
- W2022854893 modified "2023-10-17" @default.
- W2022854893 title "Iron deficiency and chlorosis in orchard and vineyard ecosystems" @default.
- W2022854893 cites W12108464 @default.
- W2022854893 cites W142894746 @default.
- W2022854893 cites W145399681 @default.
- W2022854893 cites W1662276039 @default.
- W2022854893 cites W1891993861 @default.
- W2022854893 cites W1963622514 @default.
- W2022854893 cites W1967939361 @default.
- W2022854893 cites W1972795982 @default.
- W2022854893 cites W1973885720 @default.
- W2022854893 cites W1974351691 @default.
- W2022854893 cites W1974800370 @default.
- W2022854893 cites W1981120961 @default.
- W2022854893 cites W1987387502 @default.
- W2022854893 cites W1988642605 @default.
- W2022854893 cites W1990991253 @default.
- W2022854893 cites W1995238047 @default.
- W2022854893 cites W1995997378 @default.
- W2022854893 cites W1997884037 @default.
- W2022854893 cites W1999766267 @default.
- W2022854893 cites W2002500248 @default.
- W2022854893 cites W2003299163 @default.
- W2022854893 cites W2006632267 @default.
- W2022854893 cites W2007180461 @default.
- W2022854893 cites W2011760738 @default.
- W2022854893 cites W2014061476 @default.
- W2022854893 cites W2014851585 @default.
- W2022854893 cites W2017010951 @default.
- W2022854893 cites W2019351667 @default.
- W2022854893 cites W2025008477 @default.
- W2022854893 cites W2025368794 @default.
- W2022854893 cites W2030256417 @default.
- W2022854893 cites W2035414614 @default.
- W2022854893 cites W2038254331 @default.
- W2022854893 cites W2039160265 @default.
- W2022854893 cites W2045098127 @default.
- W2022854893 cites W2045411991 @default.
- W2022854893 cites W2053668059 @default.
- W2022854893 cites W2056040923 @default.
- W2022854893 cites W2056243503 @default.
- W2022854893 cites W2057572468 @default.
- W2022854893 cites W2059050826 @default.
- W2022854893 cites W2059281169 @default.
- W2022854893 cites W2063504627 @default.
- W2022854893 cites W2071493943 @default.
- W2022854893 cites W2077755875 @default.
- W2022854893 cites W2079029864 @default.
- W2022854893 cites W2082787016 @default.
- W2022854893 cites W2083273462 @default.
- W2022854893 cites W2089200209 @default.
- W2022854893 cites W2090460467 @default.
- W2022854893 cites W2098772551 @default.
- W2022854893 cites W2101234640 @default.
- W2022854893 cites W2112137714 @default.
- W2022854893 cites W2127405737 @default.
- W2022854893 cites W2128356081 @default.
- W2022854893 cites W2142093713 @default.
- W2022854893 cites W2144673844 @default.
- W2022854893 cites W2145710275 @default.
- W2022854893 cites W2152829066 @default.
- W2022854893 cites W2154468641 @default.
- W2022854893 cites W2163579688 @default.
- W2022854893 cites W2289465578 @default.
- W2022854893 cites W2323396875 @default.
- W2022854893 cites W2475158063 @default.
- W2022854893 cites W2579863322 @default.
- W2022854893 cites W2589179086 @default.
- W2022854893 cites W2589571105 @default.
- W2022854893 cites W2589604526 @default.
- W2022854893 cites W2591466421 @default.
- W2022854893 cites W2761431728 @default.
- W2022854893 cites W2883158425 @default.
- W2022854893 cites W301823760 @default.
- W2022854893 cites W315166581 @default.
- W2022854893 cites W327653613 @default.
- W2022854893 cites W4234214928 @default.
- W2022854893 cites W4240080610 @default.
- W2022854893 cites W4246228048 @default.
- W2022854893 cites W4246757476 @default.
- W2022854893 cites W4248150450 @default.
- W2022854893 cites W4292200979 @default.
- W2022854893 cites W4292200980 @default.
- W2022854893 cites W612791091 @default.
- W2022854893 cites W70309280 @default.
- W2022854893 doi "https://doi.org/10.1016/s1161-0301(01)00125-3" @default.
- W2022854893 hasPublicationYear "2001" @default.
- W2022854893 type Work @default.
- W2022854893 sameAs 2022854893 @default.
- W2022854893 citedByCount "279" @default.
- W2022854893 countsByYear W20228548932012 @default.
- W2022854893 countsByYear W20228548932013 @default.
- W2022854893 countsByYear W20228548932014 @default.