Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022861109> ?p ?o ?g. }
- W2022861109 endingPage "853" @default.
- W2022861109 startingPage "844" @default.
- W2022861109 abstract "The paper elaborates the influence of the non-equimolar and equimolar counterdiffusion on combustion of single coal char particles in the oxy-fuel combustion conditions. The phenomenon of the non-equimolar counterdiffusion is usually neglected and superseded by the equimolar counterdiffusion. Such a replacement can lead to results, e.g. to char burnout, particle temperature and species concentrations, which do not agree with the real process. The paper presents the numerical results of single coal char particle combustion in the oxy-fuel combustion conditions at which the effect of the equimolar and non-equimolar counterdiffusion has been taken into consideration. It has been assumed that the char carbon heterogeneously reacts with O2, CO2 and H2O forming CO or CO2 and H2 depending on the combustion conditions. The reactions in the gas phase have been neglected to achieve the state of pure diffusion. The combustion of the particle is described by the mass and energy conservation equations commonly used in Euler–Lagrange computations of pulverized coal combustion. Numerical simulations performed for various values of the particle diameter and reagent concentrations clearly show that the use of the equimolar counterdiffusion model always overpredicts the non-equimolar one. Since the molar fluxes of the equimolar counterdiffusion are not coupled each other, the mass transfer towards the particle burning is higher which gives particle temperature and reaction rates too high compared to the non-equimolar counterdiffusion. Occurring discrepancy further develops during combustion also for other quantities describing the process, i.e. char burnout and gas concentrations at the particle surface. A simple correction which is proposed consists in reducing the value of the equimolar mass transfer coefficient that decreases the mass transfer and consequently letting the equimolar counterdiffusion model to be effortlessly used and get results which well follow the non-equimolar model. Such a simplified treatment of complex non-equimolar counterdiffusion can be easily implemented into numerical codes and needs no numerical solution of coupled non-linear equations describing the non-equimolar counterdiffusion." @default.
- W2022861109 created "2016-06-24" @default.
- W2022861109 creator A5042829173 @default.
- W2022861109 creator A5085617890 @default.
- W2022861109 date "2013-11-01" @default.
- W2022861109 modified "2023-09-26" @default.
- W2022861109 title "Application of different diffusion approaches in oxy-fuel combustion of single coal char particles" @default.
- W2022861109 cites W162355366 @default.
- W2022861109 cites W1977599809 @default.
- W2022861109 cites W1983810545 @default.
- W2022861109 cites W1987985260 @default.
- W2022861109 cites W1989345155 @default.
- W2022861109 cites W1998667631 @default.
- W2022861109 cites W2000481164 @default.
- W2022861109 cites W2003225779 @default.
- W2022861109 cites W2005535674 @default.
- W2022861109 cites W2011861121 @default.
- W2022861109 cites W2021720136 @default.
- W2022861109 cites W2033034993 @default.
- W2022861109 cites W2036393927 @default.
- W2022861109 cites W2043146005 @default.
- W2022861109 cites W2045464996 @default.
- W2022861109 cites W2048100766 @default.
- W2022861109 cites W2048280790 @default.
- W2022861109 cites W2049485220 @default.
- W2022861109 cites W2052031109 @default.
- W2022861109 cites W2061553541 @default.
- W2022861109 cites W2064653750 @default.
- W2022861109 cites W2078839520 @default.
- W2022861109 cites W2082071423 @default.
- W2022861109 cites W2087070363 @default.
- W2022861109 cites W2088570116 @default.
- W2022861109 cites W2093003304 @default.
- W2022861109 cites W2117453669 @default.
- W2022861109 cites W2134994273 @default.
- W2022861109 cites W2138060671 @default.
- W2022861109 cites W2162748059 @default.
- W2022861109 cites W2166422032 @default.
- W2022861109 cites W2202218623 @default.
- W2022861109 cites W2256578114 @default.
- W2022861109 cites W3099394895 @default.
- W2022861109 cites W61661649 @default.
- W2022861109 doi "https://doi.org/10.1016/j.fuel.2013.01.053" @default.
- W2022861109 hasPublicationYear "2013" @default.
- W2022861109 type Work @default.
- W2022861109 sameAs 2022861109 @default.
- W2022861109 citedByCount "10" @default.
- W2022861109 countsByYear W20228611092015 @default.
- W2022861109 countsByYear W20228611092017 @default.
- W2022861109 countsByYear W20228611092018 @default.
- W2022861109 countsByYear W20228611092020 @default.
- W2022861109 countsByYear W20228611092021 @default.
- W2022861109 countsByYear W20228611092022 @default.
- W2022861109 crossrefType "journal-article" @default.
- W2022861109 hasAuthorship W2022861109A5042829173 @default.
- W2022861109 hasAuthorship W2022861109A5085617890 @default.
- W2022861109 hasConcept C105923489 @default.
- W2022861109 hasConcept C111368507 @default.
- W2022861109 hasConcept C113196181 @default.
- W2022861109 hasConcept C116628846 @default.
- W2022861109 hasConcept C121332964 @default.
- W2022861109 hasConcept C127313418 @default.
- W2022861109 hasConcept C127413603 @default.
- W2022861109 hasConcept C147789679 @default.
- W2022861109 hasConcept C178790620 @default.
- W2022861109 hasConcept C185592680 @default.
- W2022861109 hasConcept C187530423 @default.
- W2022861109 hasConcept C188471824 @default.
- W2022861109 hasConcept C2778517922 @default.
- W2022861109 hasConcept C2779970684 @default.
- W2022861109 hasConcept C42360764 @default.
- W2022861109 hasConcept C518851703 @default.
- W2022861109 hasConcept C69357855 @default.
- W2022861109 hasConcept C97355855 @default.
- W2022861109 hasConceptScore W2022861109C105923489 @default.
- W2022861109 hasConceptScore W2022861109C111368507 @default.
- W2022861109 hasConceptScore W2022861109C113196181 @default.
- W2022861109 hasConceptScore W2022861109C116628846 @default.
- W2022861109 hasConceptScore W2022861109C121332964 @default.
- W2022861109 hasConceptScore W2022861109C127313418 @default.
- W2022861109 hasConceptScore W2022861109C127413603 @default.
- W2022861109 hasConceptScore W2022861109C147789679 @default.
- W2022861109 hasConceptScore W2022861109C178790620 @default.
- W2022861109 hasConceptScore W2022861109C185592680 @default.
- W2022861109 hasConceptScore W2022861109C187530423 @default.
- W2022861109 hasConceptScore W2022861109C188471824 @default.
- W2022861109 hasConceptScore W2022861109C2778517922 @default.
- W2022861109 hasConceptScore W2022861109C2779970684 @default.
- W2022861109 hasConceptScore W2022861109C42360764 @default.
- W2022861109 hasConceptScore W2022861109C518851703 @default.
- W2022861109 hasConceptScore W2022861109C69357855 @default.
- W2022861109 hasConceptScore W2022861109C97355855 @default.
- W2022861109 hasLocation W20228611091 @default.
- W2022861109 hasOpenAccess W2022861109 @default.
- W2022861109 hasPrimaryLocation W20228611091 @default.
- W2022861109 hasRelatedWork W1969890419 @default.
- W2022861109 hasRelatedWork W1998831651 @default.
- W2022861109 hasRelatedWork W2012189383 @default.