Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022873316> ?p ?o ?g. }
- W2022873316 endingPage "9081" @default.
- W2022873316 startingPage "9067" @default.
- W2022873316 abstract "We present measurements of internal friction and shear modulus of amorphous Si $(aensuremath{-}mathrm{Si})$ and amorphous Ge $(aensuremath{-}mathrm{Ge})$ films on double-paddle oscillators at 5500 Hz from 0.5 K up to room temperature. The temperature- independent plateau in internal friction below 10 K, which is common to all amorphous solids, also exists in these films. However, its magnitude is smaller than found for all other amorphous solids studied to date. Furthermore, it depends critically on the deposition methods. For $aensuremath{-}mathrm{Si}$ films, it decreases in the sequence of electron-beam evaporation, sputtering, self-ion implantation, and hot-wire chemical-vapor deposition (HWCVD). Annealing can also reduce the internal friction of the amorphous films considerably. Hydrogenated $aensuremath{-}mathrm{Si}$ with 1 at.% H prepared by HWCVD leads to an internal friction more than two orders of magnitude smaller than observed for all other amorphous solids. The internal friction increases after the hydrogen is removed by effusion. Our results are compared with earlier measurements on $aensuremath{-}mathrm{Si}$ and $aensuremath{-}mathrm{Ge}$ films, none of which had the sensitivity achieved here. The variability of the low-energy tunneling states in the $aensuremath{-}mathrm{Si}$ and $aensuremath{-}mathrm{Ge}$ films may be a consequence of the tetrahedrally bonded covalent continuous random network. The perfection of this network, however, depends critically on the preparation conditions, with hydrogen incorporation playing a particularly important role." @default.
- W2022873316 created "2016-06-24" @default.
- W2022873316 creator A5070374753 @default.
- W2022873316 creator A5076409244 @default.
- W2022873316 date "1998-10-01" @default.
- W2022873316 modified "2023-10-18" @default.
- W2022873316 title "Low-energy excitations in amorphous films of silicon and germanium" @default.
- W2022873316 cites W1669819412 @default.
- W2022873316 cites W1966156913 @default.
- W2022873316 cites W1969171580 @default.
- W2022873316 cites W1969457171 @default.
- W2022873316 cites W1970796633 @default.
- W2022873316 cites W1972751054 @default.
- W2022873316 cites W1978128014 @default.
- W2022873316 cites W1985350196 @default.
- W2022873316 cites W1988586571 @default.
- W2022873316 cites W1989246283 @default.
- W2022873316 cites W1993036859 @default.
- W2022873316 cites W1995403289 @default.
- W2022873316 cites W1996820724 @default.
- W2022873316 cites W2000003289 @default.
- W2022873316 cites W2005426150 @default.
- W2022873316 cites W2006350360 @default.
- W2022873316 cites W2006354268 @default.
- W2022873316 cites W2011452242 @default.
- W2022873316 cites W2011614493 @default.
- W2022873316 cites W2011965651 @default.
- W2022873316 cites W2012557762 @default.
- W2022873316 cites W2014428046 @default.
- W2022873316 cites W2019133139 @default.
- W2022873316 cites W2023005420 @default.
- W2022873316 cites W2027295341 @default.
- W2022873316 cites W2027758604 @default.
- W2022873316 cites W2028584797 @default.
- W2022873316 cites W2034059915 @default.
- W2022873316 cites W2034970203 @default.
- W2022873316 cites W2035432124 @default.
- W2022873316 cites W2036855919 @default.
- W2022873316 cites W2037561991 @default.
- W2022873316 cites W2040484346 @default.
- W2022873316 cites W2041597482 @default.
- W2022873316 cites W2042921437 @default.
- W2022873316 cites W2044236884 @default.
- W2022873316 cites W2044989760 @default.
- W2022873316 cites W2049410821 @default.
- W2022873316 cites W2050187381 @default.
- W2022873316 cites W2051215743 @default.
- W2022873316 cites W2051302883 @default.
- W2022873316 cites W2051627229 @default.
- W2022873316 cites W2054023593 @default.
- W2022873316 cites W2054464631 @default.
- W2022873316 cites W2055250792 @default.
- W2022873316 cites W2055501148 @default.
- W2022873316 cites W2058457738 @default.
- W2022873316 cites W2064840577 @default.
- W2022873316 cites W2065566139 @default.
- W2022873316 cites W2065674696 @default.
- W2022873316 cites W2066720433 @default.
- W2022873316 cites W2067179786 @default.
- W2022873316 cites W2069093099 @default.
- W2022873316 cites W2069388168 @default.
- W2022873316 cites W2070302148 @default.
- W2022873316 cites W2074388006 @default.
- W2022873316 cites W2075223960 @default.
- W2022873316 cites W2078872724 @default.
- W2022873316 cites W2081137700 @default.
- W2022873316 cites W2083465431 @default.
- W2022873316 cites W2086171002 @default.
- W2022873316 cites W2088621693 @default.
- W2022873316 cites W2089482132 @default.
- W2022873316 cites W2090507258 @default.
- W2022873316 cites W2090544253 @default.
- W2022873316 cites W2091949180 @default.
- W2022873316 cites W2093407777 @default.
- W2022873316 cites W2125760868 @default.
- W2022873316 cites W2132087474 @default.
- W2022873316 cites W2323328623 @default.
- W2022873316 cites W2625699652 @default.
- W2022873316 cites W32294388 @default.
- W2022873316 doi "https://doi.org/10.1103/physrevb.58.9067" @default.
- W2022873316 hasPublicationYear "1998" @default.
- W2022873316 type Work @default.
- W2022873316 sameAs 2022873316 @default.
- W2022873316 citedByCount "36" @default.
- W2022873316 countsByYear W20228733162012 @default.
- W2022873316 countsByYear W20228733162014 @default.
- W2022873316 countsByYear W20228733162015 @default.
- W2022873316 countsByYear W20228733162016 @default.
- W2022873316 countsByYear W20228733162017 @default.
- W2022873316 countsByYear W20228733162018 @default.
- W2022873316 countsByYear W20228733162021 @default.
- W2022873316 countsByYear W20228733162022 @default.
- W2022873316 countsByYear W20228733162023 @default.
- W2022873316 crossrefType "journal-article" @default.
- W2022873316 hasAuthorship W2022873316A5070374753 @default.
- W2022873316 hasAuthorship W2022873316A5076409244 @default.
- W2022873316 hasConcept C113196181 @default.
- W2022873316 hasConcept C121332964 @default.