Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022873825> ?p ?o ?g. }
- W2022873825 endingPage "1959" @default.
- W2022873825 startingPage "1947" @default.
- W2022873825 abstract "The most widely used approach to cancer immunotherapy is vaccines. Unfortunately, the need for multiple administrations of antigens often limits the use of one of the most effective vaccine approaches, immunogene therapy using viral vectors, because neutralizing antibodies are rapidly produced. We hypothesized that after viral immunogene therapy “primed” an initial strong antitumor immune response, subsequent “boosts” could be provided by sequential courses of chemotherapy. Three adenoviral (Ad)-based immunogene therapy regimens were administered to animals with large malignant mesothelioma and lung cancer tumors followed by three weekly administrations of a drug regimen commonly used to treat these tumors (Cisplatin/Gemcitabine). Immunogene therapy followed by chemotherapy resulted in markedly increased antitumor efficacy associated with increased numbers of antigen-specific, activated CD8+ T-cells systemically and within the tumors. Possible mechanisms included: (i) decreases in immunosuppressive cells such as myeloid-derived suppressor cells (MDSC), T-regulatory cells (T-regs), and B-cells, (ii) stimulation of memory cells by intratumoral antigen release leading to efficient cross-priming, (iii) alteration of the tumor microenvironment with production of “danger signals” and immunostimulatory cytokines, and (iv) augmented trafficking of T-cells into the tumors. This approach is currently being tested in a clinical trial and could be applied to other trials of viral immunogene therapy. The most widely used approach to cancer immunotherapy is vaccines. Unfortunately, the need for multiple administrations of antigens often limits the use of one of the most effective vaccine approaches, immunogene therapy using viral vectors, because neutralizing antibodies are rapidly produced. We hypothesized that after viral immunogene therapy “primed” an initial strong antitumor immune response, subsequent “boosts” could be provided by sequential courses of chemotherapy. Three adenoviral (Ad)-based immunogene therapy regimens were administered to animals with large malignant mesothelioma and lung cancer tumors followed by three weekly administrations of a drug regimen commonly used to treat these tumors (Cisplatin/Gemcitabine). Immunogene therapy followed by chemotherapy resulted in markedly increased antitumor efficacy associated with increased numbers of antigen-specific, activated CD8+ T-cells systemically and within the tumors. Possible mechanisms included: (i) decreases in immunosuppressive cells such as myeloid-derived suppressor cells (MDSC), T-regulatory cells (T-regs), and B-cells, (ii) stimulation of memory cells by intratumoral antigen release leading to efficient cross-priming, (iii) alteration of the tumor microenvironment with production of “danger signals” and immunostimulatory cytokines, and (iv) augmented trafficking of T-cells into the tumors. This approach is currently being tested in a clinical trial and could be applied to other trials of viral immunogene therapy." @default.
- W2022873825 created "2016-06-24" @default.
- W2022873825 creator A5000647160 @default.
- W2022873825 creator A5005953721 @default.
- W2022873825 creator A5056234830 @default.
- W2022873825 creator A5073541895 @default.
- W2022873825 creator A5073916303 @default.
- W2022873825 creator A5075838963 @default.
- W2022873825 creator A5091318104 @default.
- W2022873825 date "2010-11-01" @default.
- W2022873825 modified "2023-10-17" @default.
- W2022873825 title "Chemotherapy Delivered After Viral Immunogene Therapy Augments Antitumor Efficacy Via Multiple Immune-mediated Mechanisms" @default.
- W2022873825 cites W1492054936 @default.
- W2022873825 cites W1966577330 @default.
- W2022873825 cites W1967341479 @default.
- W2022873825 cites W1977955576 @default.
- W2022873825 cites W1982467804 @default.
- W2022873825 cites W1983923482 @default.
- W2022873825 cites W2000932071 @default.
- W2022873825 cites W2013259164 @default.
- W2022873825 cites W2016612145 @default.
- W2022873825 cites W2019750642 @default.
- W2022873825 cites W2021808416 @default.
- W2022873825 cites W2030377109 @default.
- W2022873825 cites W2044682579 @default.
- W2022873825 cites W2047902191 @default.
- W2022873825 cites W2048084134 @default.
- W2022873825 cites W2048862678 @default.
- W2022873825 cites W2052716505 @default.
- W2022873825 cites W2056893124 @default.
- W2022873825 cites W2061305430 @default.
- W2022873825 cites W2068263237 @default.
- W2022873825 cites W2070695834 @default.
- W2022873825 cites W2083991703 @default.
- W2022873825 cites W2097215182 @default.
- W2022873825 cites W2098958083 @default.
- W2022873825 cites W2110458134 @default.
- W2022873825 cites W2110530327 @default.
- W2022873825 cites W2111415894 @default.
- W2022873825 cites W2114964795 @default.
- W2022873825 cites W2125821230 @default.
- W2022873825 cites W2130276477 @default.
- W2022873825 cites W2133732201 @default.
- W2022873825 cites W2134403422 @default.
- W2022873825 cites W2140588588 @default.
- W2022873825 cites W2141170383 @default.
- W2022873825 cites W2142302700 @default.
- W2022873825 cites W2142540954 @default.
- W2022873825 cites W2143113950 @default.
- W2022873825 cites W2145994992 @default.
- W2022873825 cites W2157962067 @default.
- W2022873825 cites W2162663647 @default.
- W2022873825 cites W2323062703 @default.
- W2022873825 doi "https://doi.org/10.1038/mt.2010.159" @default.
- W2022873825 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2990510" @default.
- W2022873825 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20683443" @default.
- W2022873825 hasPublicationYear "2010" @default.
- W2022873825 type Work @default.
- W2022873825 sameAs 2022873825 @default.
- W2022873825 citedByCount "116" @default.
- W2022873825 countsByYear W20228738252012 @default.
- W2022873825 countsByYear W20228738252013 @default.
- W2022873825 countsByYear W20228738252014 @default.
- W2022873825 countsByYear W20228738252015 @default.
- W2022873825 countsByYear W20228738252016 @default.
- W2022873825 countsByYear W20228738252017 @default.
- W2022873825 countsByYear W20228738252018 @default.
- W2022873825 countsByYear W20228738252019 @default.
- W2022873825 countsByYear W20228738252020 @default.
- W2022873825 countsByYear W20228738252021 @default.
- W2022873825 countsByYear W20228738252022 @default.
- W2022873825 countsByYear W20228738252023 @default.
- W2022873825 crossrefType "journal-article" @default.
- W2022873825 hasAuthorship W2022873825A5000647160 @default.
- W2022873825 hasAuthorship W2022873825A5005953721 @default.
- W2022873825 hasAuthorship W2022873825A5056234830 @default.
- W2022873825 hasAuthorship W2022873825A5073541895 @default.
- W2022873825 hasAuthorship W2022873825A5073916303 @default.
- W2022873825 hasAuthorship W2022873825A5075838963 @default.
- W2022873825 hasAuthorship W2022873825A5091318104 @default.
- W2022873825 hasBestOaLocation W20228738251 @default.
- W2022873825 hasConcept C121608353 @default.
- W2022873825 hasConcept C126322002 @default.
- W2022873825 hasConcept C147483822 @default.
- W2022873825 hasConcept C159047783 @default.
- W2022873825 hasConcept C203014093 @default.
- W2022873825 hasConcept C2776107976 @default.
- W2022873825 hasConcept C2776694085 @default.
- W2022873825 hasConcept C2777701055 @default.
- W2022873825 hasConcept C2780674031 @default.
- W2022873825 hasConcept C502942594 @default.
- W2022873825 hasConcept C71924100 @default.
- W2022873825 hasConcept C8891405 @default.
- W2022873825 hasConceptScore W2022873825C121608353 @default.
- W2022873825 hasConceptScore W2022873825C126322002 @default.
- W2022873825 hasConceptScore W2022873825C147483822 @default.
- W2022873825 hasConceptScore W2022873825C159047783 @default.
- W2022873825 hasConceptScore W2022873825C203014093 @default.