Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022874724> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2022874724 abstract "One of the important objectives in mass spectrometry-based proteomics is the identification of post-translationally modified sites in cellular and extracellular proteomes. Proteomics techniques have been particularly effective in studying protein phosphorylation, where tens of thousands of new sites have been recently discovered in all domains of life. Such massive discovery of new sites has been facilitated by progress in affinity enrichment techniques, high-throughput analytical platforms that couple liquid chromatography (LC) and tandem mass spectrometry (MS/MS), and also powerful computational tools that assign peptides to tandem mass spectra. In this work we focus on computational protocols for identifying phosphoproteins, phosphopeptides, and phosphosites. Although the current tools already provide solid results, most methods have not been tuned to exploit particular sequence and physicochemical properties of phosphopeptides or the peculiarities of their fragment spectra. Therefore, novel algorithms can be designed to increase the sensitivity of phosphosite identification. Here we describe a machine learning-based method that improves the identification of phosphopeptides in LC-MS/MS experiments. Our algorithm is applied as a post-processing step to a standard database search. It assigns a probability score to each peptide-spectrum match (PSM) corresponding to a phosphopeptide, based on the sequence and spectral features of the peptide and its assigned fragment spectra as well as the biological propensity of particular residues in the peptide to be phosphorylated. The algorithm is based on a simple but robust logistic regression model and is used together with a conventional search engine (here, MASCOT) to filter out the PSMs with the lowest probability of being correctly identified. Our protocol was tested on two large phosphoproteomics data sets on which it increased the number of identified phosphopeptides by 10-15% compared to the conventional scoring algorithms at the same false discovery rate threshold of 1%." @default.
- W2022874724 created "2016-06-24" @default.
- W2022874724 creator A5041639230 @default.
- W2022874724 creator A5051324698 @default.
- W2022874724 creator A5078007096 @default.
- W2022874724 creator A5084242084 @default.
- W2022874724 date "2013-09-22" @default.
- W2022874724 modified "2023-10-14" @default.
- W2022874724 title "Improving phosphopeptide identification in shotgun proteomics by supervised filtering of peptide-spectrum matches" @default.
- W2022874724 cites W2051754408 @default.
- W2022874724 cites W2093509030 @default.
- W2022874724 cites W2102025585 @default.
- W2022874724 cites W2152186486 @default.
- W2022874724 cites W2164018321 @default.
- W2022874724 cites W2169243280 @default.
- W2022874724 cites W2171137597 @default.
- W2022874724 doi "https://doi.org/10.1145/2506583.2506634" @default.
- W2022874724 hasPublicationYear "2013" @default.
- W2022874724 type Work @default.
- W2022874724 sameAs 2022874724 @default.
- W2022874724 citedByCount "3" @default.
- W2022874724 countsByYear W20228747242014 @default.
- W2022874724 countsByYear W20228747242016 @default.
- W2022874724 crossrefType "proceedings-article" @default.
- W2022874724 hasAuthorship W2022874724A5041639230 @default.
- W2022874724 hasAuthorship W2022874724A5051324698 @default.
- W2022874724 hasAuthorship W2022874724A5078007096 @default.
- W2022874724 hasAuthorship W2022874724A5084242084 @default.
- W2022874724 hasConcept C104317684 @default.
- W2022874724 hasConcept C116834253 @default.
- W2022874724 hasConcept C185592680 @default.
- W2022874724 hasConcept C2779281246 @default.
- W2022874724 hasConcept C2779933727 @default.
- W2022874724 hasConcept C2781434637 @default.
- W2022874724 hasConcept C41008148 @default.
- W2022874724 hasConcept C46111723 @default.
- W2022874724 hasConcept C55493867 @default.
- W2022874724 hasConcept C59822182 @default.
- W2022874724 hasConcept C68289359 @default.
- W2022874724 hasConcept C70721500 @default.
- W2022874724 hasConcept C86803240 @default.
- W2022874724 hasConceptScore W2022874724C104317684 @default.
- W2022874724 hasConceptScore W2022874724C116834253 @default.
- W2022874724 hasConceptScore W2022874724C185592680 @default.
- W2022874724 hasConceptScore W2022874724C2779281246 @default.
- W2022874724 hasConceptScore W2022874724C2779933727 @default.
- W2022874724 hasConceptScore W2022874724C2781434637 @default.
- W2022874724 hasConceptScore W2022874724C41008148 @default.
- W2022874724 hasConceptScore W2022874724C46111723 @default.
- W2022874724 hasConceptScore W2022874724C55493867 @default.
- W2022874724 hasConceptScore W2022874724C59822182 @default.
- W2022874724 hasConceptScore W2022874724C68289359 @default.
- W2022874724 hasConceptScore W2022874724C70721500 @default.
- W2022874724 hasConceptScore W2022874724C86803240 @default.
- W2022874724 hasLocation W20228747241 @default.
- W2022874724 hasOpenAccess W2022874724 @default.
- W2022874724 hasPrimaryLocation W20228747241 @default.
- W2022874724 hasRelatedWork W2049768411 @default.
- W2022874724 hasRelatedWork W2070798416 @default.
- W2022874724 hasRelatedWork W2081051699 @default.
- W2022874724 hasRelatedWork W2113612054 @default.
- W2022874724 hasRelatedWork W2129450490 @default.
- W2022874724 hasRelatedWork W2143690416 @default.
- W2022874724 hasRelatedWork W2146360891 @default.
- W2022874724 hasRelatedWork W2161598609 @default.
- W2022874724 hasRelatedWork W2417945215 @default.
- W2022874724 hasRelatedWork W3134525696 @default.
- W2022874724 isParatext "false" @default.
- W2022874724 isRetracted "false" @default.
- W2022874724 magId "2022874724" @default.
- W2022874724 workType "article" @default.