Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022874901> ?p ?o ?g. }
- W2022874901 abstract "We introduce a general-dimensional, kernel-independent, algebraic fast multipole method and apply it to kernel regression. The motivation for this work is the approximation of kernel matrices, which appear in mathematical physics, approximation theory, non-parametric statistics, and machine learning. Existing fast multipole methods are asymptotically optimal, but the underlying constants scale quite badly with the ambient space dimension. We introduce a method that mitigates this shortcoming; it only requires kernel evaluations and scales well with the problem size, the number of processors, and the ambient dimension---as long as the intrinsic dimension of the dataset is small. We test the performance of our method on several synthetic datasets. As a highlight, our largest run was on an image dataset with 10 million points in 246 dimensions." @default.
- W2022874901 created "2016-06-24" @default.
- W2022874901 creator A5013689062 @default.
- W2022874901 creator A5044137409 @default.
- W2022874901 creator A5056070700 @default.
- W2022874901 creator A5077464013 @default.
- W2022874901 creator A5084481035 @default.
- W2022874901 date "2015-11-15" @default.
- W2022874901 modified "2023-09-26" @default.
- W2022874901 title "A kernel-independent FMM in general dimensions" @default.
- W2022874901 cites W1486164486 @default.
- W2022874901 cites W1528765304 @default.
- W2022874901 cites W1971281392 @default.
- W2022874901 cites W1984720405 @default.
- W2022874901 cites W1997059460 @default.
- W2022874901 cites W2037316890 @default.
- W2022874901 cites W2038276547 @default.
- W2022874901 cites W2038922352 @default.
- W2022874901 cites W2040872993 @default.
- W2022874901 cites W2055826969 @default.
- W2022874901 cites W2073517977 @default.
- W2022874901 cites W2083206954 @default.
- W2022874901 cites W2117926105 @default.
- W2022874901 cites W2118123209 @default.
- W2022874901 cites W2119233169 @default.
- W2022874901 cites W2125621954 @default.
- W2022874901 cites W2136770272 @default.
- W2022874901 cites W2160431995 @default.
- W2022874901 cites W2166263464 @default.
- W2022874901 cites W3101749733 @default.
- W2022874901 cites W4244670803 @default.
- W2022874901 cites W4249875616 @default.
- W2022874901 doi "https://doi.org/10.1145/2807591.2807647" @default.
- W2022874901 hasPublicationYear "2015" @default.
- W2022874901 type Work @default.
- W2022874901 sameAs 2022874901 @default.
- W2022874901 citedByCount "15" @default.
- W2022874901 countsByYear W20228749012016 @default.
- W2022874901 countsByYear W20228749012017 @default.
- W2022874901 countsByYear W20228749012018 @default.
- W2022874901 countsByYear W20228749012020 @default.
- W2022874901 countsByYear W20228749012021 @default.
- W2022874901 countsByYear W20228749012022 @default.
- W2022874901 crossrefType "proceedings-article" @default.
- W2022874901 hasAuthorship W2022874901A5013689062 @default.
- W2022874901 hasAuthorship W2022874901A5044137409 @default.
- W2022874901 hasAuthorship W2022874901A5056070700 @default.
- W2022874901 hasAuthorship W2022874901A5077464013 @default.
- W2022874901 hasAuthorship W2022874901A5084481035 @default.
- W2022874901 hasBestOaLocation W20228749011 @default.
- W2022874901 hasConcept C105795698 @default.
- W2022874901 hasConcept C11413529 @default.
- W2022874901 hasConcept C114614502 @default.
- W2022874901 hasConcept C117251300 @default.
- W2022874901 hasConcept C118615104 @default.
- W2022874901 hasConcept C121332964 @default.
- W2022874901 hasConcept C122280245 @default.
- W2022874901 hasConcept C12267149 @default.
- W2022874901 hasConcept C134517425 @default.
- W2022874901 hasConcept C154945302 @default.
- W2022874901 hasConcept C195699287 @default.
- W2022874901 hasConcept C28826006 @default.
- W2022874901 hasConcept C33676613 @default.
- W2022874901 hasConcept C33923547 @default.
- W2022874901 hasConcept C41008148 @default.
- W2022874901 hasConcept C52765159 @default.
- W2022874901 hasConcept C62520636 @default.
- W2022874901 hasConcept C74193536 @default.
- W2022874901 hasConceptScore W2022874901C105795698 @default.
- W2022874901 hasConceptScore W2022874901C11413529 @default.
- W2022874901 hasConceptScore W2022874901C114614502 @default.
- W2022874901 hasConceptScore W2022874901C117251300 @default.
- W2022874901 hasConceptScore W2022874901C118615104 @default.
- W2022874901 hasConceptScore W2022874901C121332964 @default.
- W2022874901 hasConceptScore W2022874901C122280245 @default.
- W2022874901 hasConceptScore W2022874901C12267149 @default.
- W2022874901 hasConceptScore W2022874901C134517425 @default.
- W2022874901 hasConceptScore W2022874901C154945302 @default.
- W2022874901 hasConceptScore W2022874901C195699287 @default.
- W2022874901 hasConceptScore W2022874901C28826006 @default.
- W2022874901 hasConceptScore W2022874901C33676613 @default.
- W2022874901 hasConceptScore W2022874901C33923547 @default.
- W2022874901 hasConceptScore W2022874901C41008148 @default.
- W2022874901 hasConceptScore W2022874901C52765159 @default.
- W2022874901 hasConceptScore W2022874901C62520636 @default.
- W2022874901 hasConceptScore W2022874901C74193536 @default.
- W2022874901 hasFunder F4320306084 @default.
- W2022874901 hasFunder F4320323383 @default.
- W2022874901 hasLocation W20228749011 @default.
- W2022874901 hasOpenAccess W2022874901 @default.
- W2022874901 hasPrimaryLocation W20228749011 @default.
- W2022874901 hasRelatedWork W1984421104 @default.
- W2022874901 hasRelatedWork W2079825755 @default.
- W2022874901 hasRelatedWork W2095626363 @default.
- W2022874901 hasRelatedWork W2127229869 @default.
- W2022874901 hasRelatedWork W2142373740 @default.
- W2022874901 hasRelatedWork W2366185040 @default.
- W2022874901 hasRelatedWork W2393746448 @default.
- W2022874901 hasRelatedWork W2535206775 @default.
- W2022874901 hasRelatedWork W3100948281 @default.