Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022883972> ?p ?o ?g. }
- W2022883972 endingPage "772" @default.
- W2022883972 startingPage "753" @default.
- W2022883972 abstract "Smoothed particle hydrodynamics (SPH) employs an artificial viscosity to properly capture hydrodynamic shock waves. In its original formulation, the resulting numerical viscosity is large enough to suppress structure in the velocity field on scales well above the nominal resolution limit, and to damp the generation of turbulence by fluid instabilities. This could artificially suppress random gas motions in the intracluster medium (ICM), which are driven by infalling structures during the hierarchical structure formation process. We show that this is indeed the case by analysing results obtained with an SPH formulation where an individual, time-variable viscosity is used for each particle, following a suggestion by Morris & Monaghan. Using test calculations involving strong shocks, we demonstrate that this scheme captures shocks as well as the original formulation of SPH, but, in regions away from shocks, the numerical viscosity is much smaller. In a set of nine high-resolution simulations of cosmological galaxy cluster formation, we find that this low-viscosity formulation of SPH produces substantially higher levels of turbulent gas motions in the ICM, reaching a kinetic energy content in random gas motions (measured within a 1-Mpc cube) of up to 5–30 per cent of the thermal energy content, depending on cluster mass. This also has significant effects on radial gas profiles and bulk cluster properties. We find a central flattening of the entropy profile and a reduction of the central gas density in the low-viscosity scheme. As a consequence, the bolometric X-ray luminosity is decreased by about a factor of 2. However, the cluster temperature profile remains essentially unchanged. Interestingly, this tends to reduce the differences seen in SPH and adaptive mesh refinement simulations of cluster formation. Finally, invoking a model for particle acceleration by magnetohydrodynamics waves driven by turbulence, we find that efficient electron acceleration and thus diffuse radio emission can be powered in the clusters simulated with the low-viscosity scheme provided that more than 5–10 per cent of the turbulent energy density is associated with fast magneto-sonic modes." @default.
- W2022883972 created "2016-06-24" @default.
- W2022883972 creator A5000905776 @default.
- W2022883972 creator A5014074485 @default.
- W2022883972 creator A5028305838 @default.
- W2022883972 creator A5088130236 @default.
- W2022883972 date "2005-12-11" @default.
- W2022883972 modified "2023-10-16" @default.
- W2022883972 title "Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity" @default.
- W2022883972 cites W1535980434 @default.
- W2022883972 cites W1968473807 @default.
- W2022883972 cites W1971316219 @default.
- W2022883972 cites W2009121658 @default.
- W2022883972 cites W2010171257 @default.
- W2022883972 cites W2015780324 @default.
- W2022883972 cites W2018131846 @default.
- W2022883972 cites W2030304981 @default.
- W2022883972 cites W2034543758 @default.
- W2022883972 cites W2037606656 @default.
- W2022883972 cites W2043723250 @default.
- W2022883972 cites W2049708373 @default.
- W2022883972 cites W2061031509 @default.
- W2022883972 cites W2067029170 @default.
- W2022883972 cites W2070145034 @default.
- W2022883972 cites W2074852325 @default.
- W2022883972 cites W2075638374 @default.
- W2022883972 cites W2076730205 @default.
- W2022883972 cites W2077004232 @default.
- W2022883972 cites W2080871773 @default.
- W2022883972 cites W2082236288 @default.
- W2022883972 cites W2091048361 @default.
- W2022883972 cites W2114196500 @default.
- W2022883972 cites W2122177687 @default.
- W2022883972 cites W2128808878 @default.
- W2022883972 cites W2140701118 @default.
- W2022883972 cites W2150479035 @default.
- W2022883972 cites W2162725047 @default.
- W2022883972 cites W2166504775 @default.
- W2022883972 cites W2170761360 @default.
- W2022883972 cites W3037958147 @default.
- W2022883972 cites W3100028230 @default.
- W2022883972 cites W3102277392 @default.
- W2022883972 cites W3102531267 @default.
- W2022883972 cites W3104996477 @default.
- W2022883972 cites W3105003305 @default.
- W2022883972 cites W3105180953 @default.
- W2022883972 doi "https://doi.org/10.1111/j.1365-2966.2005.09630.x" @default.
- W2022883972 hasPublicationYear "2005" @default.
- W2022883972 type Work @default.
- W2022883972 sameAs 2022883972 @default.
- W2022883972 citedByCount "273" @default.
- W2022883972 countsByYear W20228839722012 @default.
- W2022883972 countsByYear W20228839722013 @default.
- W2022883972 countsByYear W20228839722014 @default.
- W2022883972 countsByYear W20228839722015 @default.
- W2022883972 countsByYear W20228839722016 @default.
- W2022883972 countsByYear W20228839722017 @default.
- W2022883972 countsByYear W20228839722018 @default.
- W2022883972 countsByYear W20228839722019 @default.
- W2022883972 countsByYear W20228839722020 @default.
- W2022883972 countsByYear W20228839722021 @default.
- W2022883972 countsByYear W20228839722022 @default.
- W2022883972 countsByYear W20228839722023 @default.
- W2022883972 crossrefType "journal-article" @default.
- W2022883972 hasAuthorship W2022883972A5000905776 @default.
- W2022883972 hasAuthorship W2022883972A5014074485 @default.
- W2022883972 hasAuthorship W2022883972A5028305838 @default.
- W2022883972 hasAuthorship W2022883972A5088130236 @default.
- W2022883972 hasBestOaLocation W20228839721 @default.
- W2022883972 hasConcept C100893083 @default.
- W2022883972 hasConcept C121332964 @default.
- W2022883972 hasConcept C121864883 @default.
- W2022883972 hasConcept C122564879 @default.
- W2022883972 hasConcept C127172972 @default.
- W2022883972 hasConcept C127529279 @default.
- W2022883972 hasConcept C1276947 @default.
- W2022883972 hasConcept C156055797 @default.
- W2022883972 hasConcept C164866538 @default.
- W2022883972 hasConcept C181556327 @default.
- W2022883972 hasConcept C19444555 @default.
- W2022883972 hasConcept C196558001 @default.
- W2022883972 hasConcept C199360897 @default.
- W2022883972 hasConcept C41008148 @default.
- W2022883972 hasConcept C44870925 @default.
- W2022883972 hasConcept C57879066 @default.
- W2022883972 hasConcept C74650414 @default.
- W2022883972 hasConcept C97355855 @default.
- W2022883972 hasConcept C98444146 @default.
- W2022883972 hasConceptScore W2022883972C100893083 @default.
- W2022883972 hasConceptScore W2022883972C121332964 @default.
- W2022883972 hasConceptScore W2022883972C121864883 @default.
- W2022883972 hasConceptScore W2022883972C122564879 @default.
- W2022883972 hasConceptScore W2022883972C127172972 @default.
- W2022883972 hasConceptScore W2022883972C127529279 @default.
- W2022883972 hasConceptScore W2022883972C1276947 @default.
- W2022883972 hasConceptScore W2022883972C156055797 @default.
- W2022883972 hasConceptScore W2022883972C164866538 @default.
- W2022883972 hasConceptScore W2022883972C181556327 @default.