Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022886914> ?p ?o ?g. }
- W2022886914 endingPage "152" @default.
- W2022886914 startingPage "129" @default.
- W2022886914 abstract "CO2-water–basaltic glass batch experiments were performed in order to study the feasibility of low temperature CO2 sequestration into basalts including the key reactions and chemical mass transfer associated to progressive water–rock interaction. The experiments were carried out at 40 °C for up to 260 days with initial dissolved CO2 concentrations ranging from 24 to 305 mmol/kg. Alteration minerals were identified on the basaltic glass grain surfaces and in the matrix, consisting of poorly crystalline Ca–Mg–Fe carbonates, Fe-hydroxides and/or oxy-hydroxides and Ca–Mg–Fe clays. Other cryptocrystalline phases were identified by variable amounts of Al, Si and Fe reflected by the secondary mineral compositions. The water chemistry was monitored during the experiments and was characterized by an increase in Si, Ca, Mg and Na with time, whereas Al, Fe and CO2 decreased. The dissolution of basaltic glass in CO2-rich waters was observed to be incongruent with the overall water composition and secondary mineralogy depending on reaction progress and pH. The pH was determined primarily by the initial CO2 concentration and its ionization constants, the amount of dissolved basaltic glass and by the mass and composition of secondary minerals formed. Initially, the pH increased rapidly from <4.5 to ∼4.5–6. Under these conditions, Mg and Ca were observed to be mobile and dissolved stoichiometrically relative to Na, whereas Si, Al and Fe were immobile. Upon quantitative CO2 mineralization, the pH increased to >6.5 and the mobility of most elements consequently decreased including Mg and Ca. The experimental results indicate that increased aqueous CO2 concentrations modify considerably the natural water–basalt reaction path. The mineralization of CO2 into carbonates was rapid and controlled by the initial CO2 concentration and rock to water ratio, with the composition of the carbonates depending on the availability of Ca, Mg and Fe and the oxidation state of Fe. At pH <5.5, Fe was in the ferrous oxidation state resulting in the formation of Fe-rich carbonates with the incorporation of Ca and Mg as well as the formation of Ca–(Mg)–Fe smectites. At pH >5.5, the mobility of Fe decreased due to oxidation of Fe(II) to Fe(III) and subsequent formation of ferrihydrite. At pH >6.5, the experimental solutions became progressively supersaturated with calcite, zeolites and Mg-rich clays limiting the mobility of Ca and Mg. The results indicate that reactions between clays (Ca–(Mg)–Fe smectites) and carbonates at pH <6.5, and zeolites, clays (Ca–Mg–Fe smectites) and carbonates at pH >6.5, control together the availability of Ca, Mg and Fe, playing a key role for low temperature CO2 mineralization and sequestration into mafic rocks." @default.
- W2022886914 created "2016-06-24" @default.
- W2022886914 creator A5042295061 @default.
- W2022886914 creator A5055854473 @default.
- W2022886914 date "2012-03-01" @default.
- W2022886914 modified "2023-10-13" @default.
- W2022886914 title "CO2-water–basalt interaction. Low temperature experiments and implications for CO2 sequestration into basalts" @default.
- W2022886914 cites W1830358639 @default.
- W2022886914 cites W1970548478 @default.
- W2022886914 cites W1978312065 @default.
- W2022886914 cites W1979999682 @default.
- W2022886914 cites W1988549403 @default.
- W2022886914 cites W1989006208 @default.
- W2022886914 cites W1990536516 @default.
- W2022886914 cites W1996830410 @default.
- W2022886914 cites W1998239973 @default.
- W2022886914 cites W1999008600 @default.
- W2022886914 cites W2001342829 @default.
- W2022886914 cites W2008639170 @default.
- W2022886914 cites W2009321647 @default.
- W2022886914 cites W2009428627 @default.
- W2022886914 cites W2009643105 @default.
- W2022886914 cites W2012100534 @default.
- W2022886914 cites W2016594910 @default.
- W2022886914 cites W2020041075 @default.
- W2022886914 cites W2021530762 @default.
- W2022886914 cites W2022935824 @default.
- W2022886914 cites W2023203906 @default.
- W2022886914 cites W2024420666 @default.
- W2022886914 cites W2024975374 @default.
- W2022886914 cites W2026794368 @default.
- W2022886914 cites W2027257589 @default.
- W2022886914 cites W2027790751 @default.
- W2022886914 cites W2033480865 @default.
- W2022886914 cites W2043936422 @default.
- W2022886914 cites W2044575604 @default.
- W2022886914 cites W2055151817 @default.
- W2022886914 cites W2056891847 @default.
- W2022886914 cites W2063284623 @default.
- W2022886914 cites W2063906411 @default.
- W2022886914 cites W2066964298 @default.
- W2022886914 cites W2068714502 @default.
- W2022886914 cites W2082450384 @default.
- W2022886914 cites W2082940394 @default.
- W2022886914 cites W2090968131 @default.
- W2022886914 cites W2101054218 @default.
- W2022886914 cites W2107380728 @default.
- W2022886914 cites W2107753785 @default.
- W2022886914 cites W2111473359 @default.
- W2022886914 cites W2119438235 @default.
- W2022886914 cites W2119818932 @default.
- W2022886914 cites W2133446770 @default.
- W2022886914 cites W2133623351 @default.
- W2022886914 cites W2136310936 @default.
- W2022886914 cites W2142681232 @default.
- W2022886914 cites W2147587805 @default.
- W2022886914 cites W2159767575 @default.
- W2022886914 cites W2160252043 @default.
- W2022886914 cites W2343899430 @default.
- W2022886914 cites W2418173338 @default.
- W2022886914 cites W61186837 @default.
- W2022886914 doi "https://doi.org/10.1016/j.gca.2011.12.012" @default.
- W2022886914 hasPublicationYear "2012" @default.
- W2022886914 type Work @default.
- W2022886914 sameAs 2022886914 @default.
- W2022886914 citedByCount "106" @default.
- W2022886914 countsByYear W20228869142012 @default.
- W2022886914 countsByYear W20228869142013 @default.
- W2022886914 countsByYear W20228869142014 @default.
- W2022886914 countsByYear W20228869142016 @default.
- W2022886914 countsByYear W20228869142017 @default.
- W2022886914 countsByYear W20228869142018 @default.
- W2022886914 countsByYear W20228869142019 @default.
- W2022886914 countsByYear W20228869142020 @default.
- W2022886914 countsByYear W20228869142021 @default.
- W2022886914 countsByYear W20228869142022 @default.
- W2022886914 countsByYear W20228869142023 @default.
- W2022886914 crossrefType "journal-article" @default.
- W2022886914 hasAuthorship W2022886914A5042295061 @default.
- W2022886914 hasAuthorship W2022886914A5055854473 @default.
- W2022886914 hasConcept C111696902 @default.
- W2022886914 hasConcept C127313418 @default.
- W2022886914 hasConcept C147789679 @default.
- W2022886914 hasConcept C149849071 @default.
- W2022886914 hasConcept C161509811 @default.
- W2022886914 hasConcept C17409809 @default.
- W2022886914 hasConcept C178790620 @default.
- W2022886914 hasConcept C185592680 @default.
- W2022886914 hasConcept C199289684 @default.
- W2022886914 hasConcept C537208039 @default.
- W2022886914 hasConcept C88380143 @default.
- W2022886914 hasConceptScore W2022886914C111696902 @default.
- W2022886914 hasConceptScore W2022886914C127313418 @default.
- W2022886914 hasConceptScore W2022886914C147789679 @default.
- W2022886914 hasConceptScore W2022886914C149849071 @default.
- W2022886914 hasConceptScore W2022886914C161509811 @default.
- W2022886914 hasConceptScore W2022886914C17409809 @default.
- W2022886914 hasConceptScore W2022886914C178790620 @default.