Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022887651> ?p ?o ?g. }
- W2022887651 endingPage "165" @default.
- W2022887651 startingPage "136" @default.
- W2022887651 abstract "► We use ProBMoT, a tool for automated modeling of dynamical systems . ► ProBMoT learns process-based models from measurements and domain knowledge. ► ProBMoT learns both model structure and parameters using different estimation methods. ► We compare global and local parameter estimation in ProBMoT on aquatic ecosystems . ► Global parameter estimation in ProBMoT finds more accurate models on a range of tasks. Modeling dynamical systems involves two subtasks: structure identification and parameter estimation. ProBMoT is a tool for automated modeling of dynamical systems that addresses both tasks simultaneously. It takes into account domain knowledge formalized as templates for components of the process-based models: entities and processes. Taking a conceptual model of the system, the library of domain knowledge, and measurements of a particular dynamical system, it identifies both the structure and numerical parameters of the appropriate process-based model. ProBMoT has two main components corresponding to the two subtasks of modeling. The first component is concerned with generating candidate model structures that adhere to the conceptual model specified as input. The second subsystem uses the measured data to find suitable values for the constant parameters of a given model by using parameter estimation methods. ProBMoT uses model error to rank model structures and select the one that fits measured data best. In this paper, we investigate the influence of the selection of the parameter estimation methods on the structure identification. We consider one local (derivative-based) and one global (meta-heuristic) parameter estimation method. As opposed to other comparative studies of parameter estimation methods that focus on identifying parameters of a single model structure, we compare the parameter estimation methods in the context of repetitive parameter estimation for a number of candidate model structures. The results confirm the superiority of the global optimization methods over the local ones in the context of structure identification." @default.
- W2022887651 created "2016-06-24" @default.
- W2022887651 creator A5039842961 @default.
- W2022887651 creator A5056557145 @default.
- W2022887651 creator A5064609702 @default.
- W2022887651 creator A5079563635 @default.
- W2022887651 creator A5089300954 @default.
- W2022887651 date "2012-10-01" @default.
- W2022887651 modified "2023-10-14" @default.
- W2022887651 title "The influence of parameter fitting methods on model structure selection in automated modeling of aquatic ecosystems" @default.
- W2022887651 cites W1635118735 @default.
- W2022887651 cites W1995637470 @default.
- W2022887651 cites W2013221378 @default.
- W2022887651 cites W2014774244 @default.
- W2022887651 cites W2037606162 @default.
- W2022887651 cites W2055368398 @default.
- W2022887651 cites W2058672313 @default.
- W2022887651 cites W2067507248 @default.
- W2022887651 cites W2072033391 @default.
- W2022887651 cites W2081217725 @default.
- W2022887651 cites W2089713271 @default.
- W2022887651 cites W2091635497 @default.
- W2022887651 cites W2105504591 @default.
- W2022887651 cites W2146020183 @default.
- W2022887651 cites W2168005779 @default.
- W2022887651 cites W2168388823 @default.
- W2022887651 cites W6522069 @default.
- W2022887651 doi "https://doi.org/10.1016/j.ecolmodel.2012.06.001" @default.
- W2022887651 hasPublicationYear "2012" @default.
- W2022887651 type Work @default.
- W2022887651 sameAs 2022887651 @default.
- W2022887651 citedByCount "22" @default.
- W2022887651 countsByYear W20228876512012 @default.
- W2022887651 countsByYear W20228876512013 @default.
- W2022887651 countsByYear W20228876512014 @default.
- W2022887651 countsByYear W20228876512015 @default.
- W2022887651 countsByYear W20228876512016 @default.
- W2022887651 countsByYear W20228876512017 @default.
- W2022887651 countsByYear W20228876512018 @default.
- W2022887651 countsByYear W20228876512019 @default.
- W2022887651 countsByYear W20228876512020 @default.
- W2022887651 countsByYear W20228876512021 @default.
- W2022887651 countsByYear W20228876512022 @default.
- W2022887651 crossrefType "journal-article" @default.
- W2022887651 hasAuthorship W2022887651A5039842961 @default.
- W2022887651 hasAuthorship W2022887651A5056557145 @default.
- W2022887651 hasAuthorship W2022887651A5064609702 @default.
- W2022887651 hasAuthorship W2022887651A5079563635 @default.
- W2022887651 hasAuthorship W2022887651A5089300954 @default.
- W2022887651 hasConcept C111919701 @default.
- W2022887651 hasConcept C11413529 @default.
- W2022887651 hasConcept C116834253 @default.
- W2022887651 hasConcept C119247159 @default.
- W2022887651 hasConcept C119857082 @default.
- W2022887651 hasConcept C121332964 @default.
- W2022887651 hasConcept C124101348 @default.
- W2022887651 hasConcept C127413603 @default.
- W2022887651 hasConcept C134306372 @default.
- W2022887651 hasConcept C154945302 @default.
- W2022887651 hasConcept C167928553 @default.
- W2022887651 hasConcept C168167062 @default.
- W2022887651 hasConcept C173801870 @default.
- W2022887651 hasConcept C18903297 @default.
- W2022887651 hasConcept C21200559 @default.
- W2022887651 hasConcept C24326235 @default.
- W2022887651 hasConcept C2780009758 @default.
- W2022887651 hasConcept C33923547 @default.
- W2022887651 hasConcept C36503486 @default.
- W2022887651 hasConcept C41008148 @default.
- W2022887651 hasConcept C62520636 @default.
- W2022887651 hasConcept C79379906 @default.
- W2022887651 hasConcept C86803240 @default.
- W2022887651 hasConcept C93959086 @default.
- W2022887651 hasConcept C97355855 @default.
- W2022887651 hasConcept C98045186 @default.
- W2022887651 hasConceptScore W2022887651C111919701 @default.
- W2022887651 hasConceptScore W2022887651C11413529 @default.
- W2022887651 hasConceptScore W2022887651C116834253 @default.
- W2022887651 hasConceptScore W2022887651C119247159 @default.
- W2022887651 hasConceptScore W2022887651C119857082 @default.
- W2022887651 hasConceptScore W2022887651C121332964 @default.
- W2022887651 hasConceptScore W2022887651C124101348 @default.
- W2022887651 hasConceptScore W2022887651C127413603 @default.
- W2022887651 hasConceptScore W2022887651C134306372 @default.
- W2022887651 hasConceptScore W2022887651C154945302 @default.
- W2022887651 hasConceptScore W2022887651C167928553 @default.
- W2022887651 hasConceptScore W2022887651C168167062 @default.
- W2022887651 hasConceptScore W2022887651C173801870 @default.
- W2022887651 hasConceptScore W2022887651C18903297 @default.
- W2022887651 hasConceptScore W2022887651C21200559 @default.
- W2022887651 hasConceptScore W2022887651C24326235 @default.
- W2022887651 hasConceptScore W2022887651C2780009758 @default.
- W2022887651 hasConceptScore W2022887651C33923547 @default.
- W2022887651 hasConceptScore W2022887651C36503486 @default.
- W2022887651 hasConceptScore W2022887651C41008148 @default.
- W2022887651 hasConceptScore W2022887651C62520636 @default.
- W2022887651 hasConceptScore W2022887651C79379906 @default.
- W2022887651 hasConceptScore W2022887651C86803240 @default.