Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022888924> ?p ?o ?g. }
- W2022888924 endingPage "66" @default.
- W2022888924 startingPage "66" @default.
- W2022888924 abstract "The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA) and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the noise of the raw data to produce a clear signal given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. Split-line or broken-stick regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t) = A + (B + Ct)Rt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data allowed 11% of the Escherichia coli features to be fitted by an exponential function, and 25% of the Rattus norvegicus features could be described by the critical exponential model, all with statistical significance of p < 0.05. The statistical non-linear regression approaches presented in this study provide detailed biologically oriented descriptions of individual gene expression profiles, using biologically variable data to generate a set of defining parameters. These approaches have application to the modelling and greater interpretation of profiles obtained across a wide range of platforms, such as microarrays. Through careful choice of appropriate model forms, such statistical regression approaches allow an improved comparison of gene expression profiles, and may provide an approach for the greater understanding of common regulatory mechanisms between genes." @default.
- W2022888924 created "2016-06-24" @default.
- W2022888924 creator A5044595264 @default.
- W2022888924 creator A5059185387 @default.
- W2022888924 creator A5081709854 @default.
- W2022888924 creator A5090009799 @default.
- W2022888924 date "2008-01-01" @default.
- W2022888924 modified "2023-10-12" @default.
- W2022888924 title "Statistical modelling of transcript profiles of differentially regulated genes" @default.
- W2022888924 cites W1524615273 @default.
- W2022888924 cites W1963613100 @default.
- W2022888924 cites W1973249296 @default.
- W2022888924 cites W1975178531 @default.
- W2022888924 cites W1975730439 @default.
- W2022888924 cites W2005389118 @default.
- W2022888924 cites W2006327910 @default.
- W2022888924 cites W2010893921 @default.
- W2022888924 cites W2011182063 @default.
- W2022888924 cites W2014978570 @default.
- W2022888924 cites W2015411160 @default.
- W2022888924 cites W2020033148 @default.
- W2022888924 cites W2037753621 @default.
- W2022888924 cites W2050525336 @default.
- W2022888924 cites W2072861031 @default.
- W2022888924 cites W2074388020 @default.
- W2022888924 cites W2074403192 @default.
- W2022888924 cites W2092840781 @default.
- W2022888924 cites W2103712182 @default.
- W2022888924 cites W2105559737 @default.
- W2022888924 cites W2107845572 @default.
- W2022888924 cites W2108794386 @default.
- W2022888924 cites W2117147573 @default.
- W2022888924 cites W2126895260 @default.
- W2022888924 cites W2131589959 @default.
- W2022888924 cites W2134092975 @default.
- W2022888924 cites W2143198897 @default.
- W2022888924 cites W2144985975 @default.
- W2022888924 cites W2146506956 @default.
- W2022888924 cites W2153208554 @default.
- W2022888924 cites W2153974306 @default.
- W2022888924 cites W2155465020 @default.
- W2022888924 cites W2159592674 @default.
- W2022888924 cites W2169544235 @default.
- W2022888924 cites W2170989708 @default.
- W2022888924 cites W2804007336 @default.
- W2022888924 cites W3104024536 @default.
- W2022888924 doi "https://doi.org/10.1186/1471-2199-9-66" @default.
- W2022888924 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2525656" @default.
- W2022888924 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18651954" @default.
- W2022888924 hasPublicationYear "2008" @default.
- W2022888924 type Work @default.
- W2022888924 sameAs 2022888924 @default.
- W2022888924 citedByCount "15" @default.
- W2022888924 countsByYear W20228889242012 @default.
- W2022888924 countsByYear W20228889242013 @default.
- W2022888924 countsByYear W20228889242014 @default.
- W2022888924 countsByYear W20228889242015 @default.
- W2022888924 countsByYear W20228889242016 @default.
- W2022888924 countsByYear W20228889242018 @default.
- W2022888924 countsByYear W20228889242020 @default.
- W2022888924 crossrefType "journal-article" @default.
- W2022888924 hasAuthorship W2022888924A5044595264 @default.
- W2022888924 hasAuthorship W2022888924A5059185387 @default.
- W2022888924 hasAuthorship W2022888924A5081709854 @default.
- W2022888924 hasAuthorship W2022888924A5090009799 @default.
- W2022888924 hasBestOaLocation W20228889241 @default.
- W2022888924 hasConcept C104317684 @default.
- W2022888924 hasConcept C105795698 @default.
- W2022888924 hasConcept C150194340 @default.
- W2022888924 hasConcept C163175372 @default.
- W2022888924 hasConcept C18431079 @default.
- W2022888924 hasConcept C33923547 @default.
- W2022888924 hasConcept C48921125 @default.
- W2022888924 hasConcept C54355233 @default.
- W2022888924 hasConcept C70721500 @default.
- W2022888924 hasConcept C73555534 @default.
- W2022888924 hasConcept C83546350 @default.
- W2022888924 hasConcept C8415881 @default.
- W2022888924 hasConcept C86803240 @default.
- W2022888924 hasConcept C95371953 @default.
- W2022888924 hasConceptScore W2022888924C104317684 @default.
- W2022888924 hasConceptScore W2022888924C105795698 @default.
- W2022888924 hasConceptScore W2022888924C150194340 @default.
- W2022888924 hasConceptScore W2022888924C163175372 @default.
- W2022888924 hasConceptScore W2022888924C18431079 @default.
- W2022888924 hasConceptScore W2022888924C33923547 @default.
- W2022888924 hasConceptScore W2022888924C48921125 @default.
- W2022888924 hasConceptScore W2022888924C54355233 @default.
- W2022888924 hasConceptScore W2022888924C70721500 @default.
- W2022888924 hasConceptScore W2022888924C73555534 @default.
- W2022888924 hasConceptScore W2022888924C83546350 @default.
- W2022888924 hasConceptScore W2022888924C8415881 @default.
- W2022888924 hasConceptScore W2022888924C86803240 @default.
- W2022888924 hasConceptScore W2022888924C95371953 @default.
- W2022888924 hasIssue "1" @default.
- W2022888924 hasLocation W20228889241 @default.
- W2022888924 hasLocation W20228889242 @default.
- W2022888924 hasLocation W20228889243 @default.