Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022892223> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2022892223 endingPage "475" @default.
- W2022892223 startingPage "468" @default.
- W2022892223 abstract "Based on very high resolution satellite images, object-based classification methods can be used to produce large scale maps for forest management. These new products require a method to derive quantitative information about the accuracy and precision of delineated boundaries. This assessment would complement any measure of thematic accuracy derived from the confusion matrix. This study aims to assess the positional quality of the boundaries between different landscape units produced by automated segmentation of IKONOS and SPOT-5 satellite images over temperate forests. A robust method was developed to assess the accuracy and the precision of the forest boundaries, respectively measured by the bias and the standard deviation. The two main sources of positional error, namely residual parallax and automatic segmentation, were independently assessed. Positional errors caused by the residual parallax were quantified using a 3D model. Forest stand boundaries generated by automatic segmentation were compared to corresponding visual delineations. The results showed that residual parallax was the major source of positive bias (area overestimation) along forest/non-forest boundaries and depended on the interactions between forest stand patterns and sensor viewing angles. Due mainly to tree shade, the automatic segmentation also produced a positive bias on forest areas, which remained under I in for both IKONOS-2 and SPOT-5 images. Standard deviation did not increase linearly with pixel size and was influenced by the nature of the boundary. Production of 1:20,000 scale forest maps from very high resolution satellite data clearly requires acquisition of near nadir imagery or knowledge of landscape object height for true orthorectification. In these cases, IKONOS-2 segmentation outputs were found to correspond with 1:20,000 scale map specification, and SPOT-5 imagery with 1:30,000 scale. (C) 2007 Elsevier Inc. All rights reserved." @default.
- W2022892223 created "2016-06-24" @default.
- W2022892223 creator A5025976872 @default.
- W2022892223 creator A5055338308 @default.
- W2022892223 date "2007-10-30" @default.
- W2022892223 modified "2023-10-06" @default.
- W2022892223 title "A quantitative assessment of boundaries in automated forest stand delineation using very high resolution imagery" @default.
- W2022892223 cites W1519570384 @default.
- W2022892223 cites W1522046140 @default.
- W2022892223 cites W1975347338 @default.
- W2022892223 cites W1976193075 @default.
- W2022892223 cites W1981897942 @default.
- W2022892223 cites W1996409813 @default.
- W2022892223 cites W1998598901 @default.
- W2022892223 cites W2001747857 @default.
- W2022892223 cites W2021189098 @default.
- W2022892223 cites W2030266523 @default.
- W2022892223 cites W2031305957 @default.
- W2022892223 cites W2040757194 @default.
- W2022892223 cites W2049233123 @default.
- W2022892223 cites W2063625269 @default.
- W2022892223 cites W2086141297 @default.
- W2022892223 cites W2091041426 @default.
- W2022892223 cites W2098805041 @default.
- W2022892223 cites W2114828048 @default.
- W2022892223 cites W2131228247 @default.
- W2022892223 cites W2138973222 @default.
- W2022892223 cites W2142356726 @default.
- W2022892223 cites W2143682935 @default.
- W2022892223 cites W2159703886 @default.
- W2022892223 cites W2164785235 @default.
- W2022892223 cites W2166786759 @default.
- W2022892223 cites W2171177936 @default.
- W2022892223 cites W2905233803 @default.
- W2022892223 cites W2981849677 @default.
- W2022892223 cites W595703008 @default.
- W2022892223 doi "https://doi.org/10.1016/j.rse.2007.02.031" @default.
- W2022892223 hasPublicationYear "2007" @default.
- W2022892223 type Work @default.
- W2022892223 sameAs 2022892223 @default.
- W2022892223 citedByCount "66" @default.
- W2022892223 countsByYear W20228922232012 @default.
- W2022892223 countsByYear W20228922232013 @default.
- W2022892223 countsByYear W20228922232014 @default.
- W2022892223 countsByYear W20228922232015 @default.
- W2022892223 countsByYear W20228922232016 @default.
- W2022892223 countsByYear W20228922232017 @default.
- W2022892223 countsByYear W20228922232018 @default.
- W2022892223 countsByYear W20228922232019 @default.
- W2022892223 countsByYear W20228922232020 @default.
- W2022892223 countsByYear W20228922232021 @default.
- W2022892223 countsByYear W20228922232022 @default.
- W2022892223 crossrefType "journal-article" @default.
- W2022892223 hasAuthorship W2022892223A5025976872 @default.
- W2022892223 hasAuthorship W2022892223A5055338308 @default.
- W2022892223 hasConcept C127313418 @default.
- W2022892223 hasConcept C138268822 @default.
- W2022892223 hasConcept C154945302 @default.
- W2022892223 hasConcept C2778102629 @default.
- W2022892223 hasConcept C3019060180 @default.
- W2022892223 hasConcept C3020199158 @default.
- W2022892223 hasConcept C39432304 @default.
- W2022892223 hasConcept C41008148 @default.
- W2022892223 hasConcept C62649853 @default.
- W2022892223 hasConceptScore W2022892223C127313418 @default.
- W2022892223 hasConceptScore W2022892223C138268822 @default.
- W2022892223 hasConceptScore W2022892223C154945302 @default.
- W2022892223 hasConceptScore W2022892223C2778102629 @default.
- W2022892223 hasConceptScore W2022892223C3019060180 @default.
- W2022892223 hasConceptScore W2022892223C3020199158 @default.
- W2022892223 hasConceptScore W2022892223C39432304 @default.
- W2022892223 hasConceptScore W2022892223C41008148 @default.
- W2022892223 hasConceptScore W2022892223C62649853 @default.
- W2022892223 hasIssue "4" @default.
- W2022892223 hasLocation W20228922231 @default.
- W2022892223 hasOpenAccess W2022892223 @default.
- W2022892223 hasPrimaryLocation W20228922231 @default.
- W2022892223 hasRelatedWork W1845944467 @default.
- W2022892223 hasRelatedWork W2016185408 @default.
- W2022892223 hasRelatedWork W2076904135 @default.
- W2022892223 hasRelatedWork W2316024631 @default.
- W2022892223 hasRelatedWork W2521187057 @default.
- W2022892223 hasRelatedWork W2571059183 @default.
- W2022892223 hasRelatedWork W2941065216 @default.
- W2022892223 hasRelatedWork W3031307079 @default.
- W2022892223 hasRelatedWork W3186906386 @default.
- W2022892223 hasRelatedWork W4310815754 @default.
- W2022892223 hasVolume "110" @default.
- W2022892223 isParatext "false" @default.
- W2022892223 isRetracted "false" @default.
- W2022892223 magId "2022892223" @default.
- W2022892223 workType "article" @default.