Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022892346> ?p ?o ?g. }
- W2022892346 endingPage "2772" @default.
- W2022892346 startingPage "2763" @default.
- W2022892346 abstract "Cancer diagnosis is an important emerging clinical application of microarray data. Its accurate prediction to the type or size of tumors relies on adopting powerful and reliable classification models, so as to patients can be provided with better treatment or response to therapy. However, the high dimensionality of microarray data may bring some disadvantages, such as over-fitting, poor performance and low efficiency, to traditional classification models. Thus, one of the challenging tasks in cancer diagnosis is how to identify salient expression genes from thousands of genes in microarray data that can directly contribute to the phenotype or symptom of disease. In this paper, we propose a new ensemble gene selection method (EGS) to choose multiple gene subsets for classification purpose, where the significant degree of gene is measured by conditional mutual information or its normalized form. After different gene subsets have been obtained by setting different starting points of the search procedure, they will be used to train multiple base classifiers and then aggregated into a consensus classifier by the manner of majority voting. The proposed method is compared with five popular gene selection methods on six public microarray datasets and the comparison results show that our method works well." @default.
- W2022892346 created "2016-06-24" @default.
- W2022892346 creator A5015696160 @default.
- W2022892346 creator A5020147975 @default.
- W2022892346 creator A5034618861 @default.
- W2022892346 date "2010-08-01" @default.
- W2022892346 modified "2023-10-17" @default.
- W2022892346 title "Ensemble gene selection for cancer classification" @default.
- W2022892346 cites W1520812622 @default.
- W2022892346 cites W1583145088 @default.
- W2022892346 cites W1599585030 @default.
- W2022892346 cites W1970698820 @default.
- W2022892346 cites W1981399499 @default.
- W2022892346 cites W1981959369 @default.
- W2022892346 cites W1989175732 @default.
- W2022892346 cites W1992018127 @default.
- W2022892346 cites W2000771269 @default.
- W2022892346 cites W2008794359 @default.
- W2022892346 cites W2019683663 @default.
- W2022892346 cites W2020217782 @default.
- W2022892346 cites W2022692239 @default.
- W2022892346 cites W2032909675 @default.
- W2022892346 cites W2037721365 @default.
- W2022892346 cites W2040814250 @default.
- W2022892346 cites W2065454701 @default.
- W2022892346 cites W2080278322 @default.
- W2022892346 cites W2088851040 @default.
- W2022892346 cites W2091432617 @default.
- W2022892346 cites W2098509901 @default.
- W2022892346 cites W2098740506 @default.
- W2022892346 cites W2100383651 @default.
- W2022892346 cites W2102831150 @default.
- W2022892346 cites W2104653669 @default.
- W2022892346 cites W2109103446 @default.
- W2022892346 cites W2109363337 @default.
- W2022892346 cites W2116459725 @default.
- W2022892346 cites W2118064259 @default.
- W2022892346 cites W2118789532 @default.
- W2022892346 cites W2119387367 @default.
- W2022892346 cites W2128985829 @default.
- W2022892346 cites W2131822674 @default.
- W2022892346 cites W2131987814 @default.
- W2022892346 cites W2132549764 @default.
- W2022892346 cites W2140695136 @default.
- W2022892346 cites W2141703917 @default.
- W2022892346 cites W2142045877 @default.
- W2022892346 cites W2143347324 @default.
- W2022892346 cites W2143481518 @default.
- W2022892346 cites W2147246240 @default.
- W2022892346 cites W2149954962 @default.
- W2022892346 cites W2150001682 @default.
- W2022892346 cites W2150777110 @default.
- W2022892346 cites W2153144823 @default.
- W2022892346 cites W2155953385 @default.
- W2022892346 cites W2158012006 @default.
- W2022892346 cites W2159400887 @default.
- W2022892346 cites W2165250079 @default.
- W2022892346 cites W2165580920 @default.
- W2022892346 doi "https://doi.org/10.1016/j.patcog.2010.02.008" @default.
- W2022892346 hasPublicationYear "2010" @default.
- W2022892346 type Work @default.
- W2022892346 sameAs 2022892346 @default.
- W2022892346 citedByCount "70" @default.
- W2022892346 countsByYear W20228923462012 @default.
- W2022892346 countsByYear W20228923462013 @default.
- W2022892346 countsByYear W20228923462014 @default.
- W2022892346 countsByYear W20228923462015 @default.
- W2022892346 countsByYear W20228923462016 @default.
- W2022892346 countsByYear W20228923462017 @default.
- W2022892346 countsByYear W20228923462018 @default.
- W2022892346 countsByYear W20228923462019 @default.
- W2022892346 countsByYear W20228923462020 @default.
- W2022892346 countsByYear W20228923462021 @default.
- W2022892346 countsByYear W20228923462022 @default.
- W2022892346 countsByYear W20228923462023 @default.
- W2022892346 crossrefType "journal-article" @default.
- W2022892346 hasAuthorship W2022892346A5015696160 @default.
- W2022892346 hasAuthorship W2022892346A5020147975 @default.
- W2022892346 hasAuthorship W2022892346A5034618861 @default.
- W2022892346 hasConcept C104317684 @default.
- W2022892346 hasConcept C111030470 @default.
- W2022892346 hasConcept C119857082 @default.
- W2022892346 hasConcept C124101348 @default.
- W2022892346 hasConcept C148483581 @default.
- W2022892346 hasConcept C150194340 @default.
- W2022892346 hasConcept C154945302 @default.
- W2022892346 hasConcept C2984324147 @default.
- W2022892346 hasConcept C41008148 @default.
- W2022892346 hasConcept C45942800 @default.
- W2022892346 hasConcept C54355233 @default.
- W2022892346 hasConcept C81917197 @default.
- W2022892346 hasConcept C8415881 @default.
- W2022892346 hasConcept C86803240 @default.
- W2022892346 hasConcept C95623464 @default.
- W2022892346 hasConceptScore W2022892346C104317684 @default.
- W2022892346 hasConceptScore W2022892346C111030470 @default.
- W2022892346 hasConceptScore W2022892346C119857082 @default.
- W2022892346 hasConceptScore W2022892346C124101348 @default.