Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022894635> ?p ?o ?g. }
- W2022894635 endingPage "1132" @default.
- W2022894635 startingPage "1126" @default.
- W2022894635 abstract "It is difficult for radiologists to classify pneumoconiosis with small nodules on chest radiographs. Therefore, we have developed a computer-aided diagnosis (CAD) system based on the rule-based plus artificial neural network (ANN) method for distinction between normal and abnormal regions of interest (ROIs) selected from chest radiographs with and without pneumoconiosis. The image database consists of 11 normal and 12 abnormal chest radiographs. These abnormal cases included five silicoses, four asbestoses, and three other pneumoconioses. ROIs (matrix size, 32 × 32) were selected from normal and abnormal lungs. We obtained power spectra (PS) by Fourier transform for the frequency analysis. A rule-based method using PS values at 0.179 and 0.357 cycles per millimeter, corresponding to the spatial frequencies of nodular patterns, were employed for identification of obviously normal or obviously abnormal ROIs. Then, ANN was applied for classification of the remaining normal and abnormal ROIs, which were not classified as obviously abnormal or normal by the rule-based method. The classification performance was evaluated by the area under the receiver operating characteristic curve (Az value). The Az value was 0.972 ± 0.012 for the rule-based plus ANN method, which was larger than that of 0.961 ± 0.016 for the ANN method alone (P ≤ 0.15) and that of 0.873 for the rule-based method alone. We have developed a rule-based plus pattern recognition technique based on the ANN for classification of pneumoconiosis on chest radiography. Our CAD system based on PS would be useful to assist radiologists in the classification of pneumoconiosis." @default.
- W2022894635 created "2016-06-24" @default.
- W2022894635 creator A5053394542 @default.
- W2022894635 creator A5059547798 @default.
- W2022894635 creator A5067154244 @default.
- W2022894635 date "2010-12-14" @default.
- W2022894635 modified "2023-09-27" @default.
- W2022894635 title "Computerized Analysis of Pneumoconiosis in Digital Chest Radiography: Effect of Artificial Neural Network Trained with Power Spectra" @default.
- W2022894635 cites W1969338278 @default.
- W2022894635 cites W1977193095 @default.
- W2022894635 cites W1983260859 @default.
- W2022894635 cites W1985990893 @default.
- W2022894635 cites W1998862787 @default.
- W2022894635 cites W2003226960 @default.
- W2022894635 cites W2014756430 @default.
- W2022894635 cites W2023522838 @default.
- W2022894635 cites W2025737810 @default.
- W2022894635 cites W2028704405 @default.
- W2022894635 cites W2041352917 @default.
- W2022894635 cites W2044140763 @default.
- W2022894635 cites W2049380073 @default.
- W2022894635 cites W2063929783 @default.
- W2022894635 cites W2065029800 @default.
- W2022894635 cites W2089438698 @default.
- W2022894635 cites W2127085684 @default.
- W2022894635 cites W2138080168 @default.
- W2022894635 cites W2146911148 @default.
- W2022894635 cites W2155323443 @default.
- W2022894635 cites W2167762696 @default.
- W2022894635 cites W4251310582 @default.
- W2022894635 doi "https://doi.org/10.1007/s10278-010-9357-7" @default.
- W2022894635 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3222544" @default.
- W2022894635 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21153856" @default.
- W2022894635 hasPublicationYear "2010" @default.
- W2022894635 type Work @default.
- W2022894635 sameAs 2022894635 @default.
- W2022894635 citedByCount "23" @default.
- W2022894635 countsByYear W20228946352012 @default.
- W2022894635 countsByYear W20228946352013 @default.
- W2022894635 countsByYear W20228946352014 @default.
- W2022894635 countsByYear W20228946352017 @default.
- W2022894635 countsByYear W20228946352019 @default.
- W2022894635 countsByYear W20228946352020 @default.
- W2022894635 countsByYear W20228946352021 @default.
- W2022894635 countsByYear W20228946352022 @default.
- W2022894635 countsByYear W20228946352023 @default.
- W2022894635 crossrefType "journal-article" @default.
- W2022894635 hasAuthorship W2022894635A5053394542 @default.
- W2022894635 hasAuthorship W2022894635A5059547798 @default.
- W2022894635 hasAuthorship W2022894635A5067154244 @default.
- W2022894635 hasBestOaLocation W20228946352 @default.
- W2022894635 hasConcept C126322002 @default.
- W2022894635 hasConcept C126838900 @default.
- W2022894635 hasConcept C127413603 @default.
- W2022894635 hasConcept C142724271 @default.
- W2022894635 hasConcept C153180895 @default.
- W2022894635 hasConcept C154945302 @default.
- W2022894635 hasConcept C194789388 @default.
- W2022894635 hasConcept C199639397 @default.
- W2022894635 hasConcept C2776715762 @default.
- W2022894635 hasConcept C2779549770 @default.
- W2022894635 hasConcept C2781137159 @default.
- W2022894635 hasConcept C2781305912 @default.
- W2022894635 hasConcept C36454342 @default.
- W2022894635 hasConcept C41008148 @default.
- W2022894635 hasConcept C50644808 @default.
- W2022894635 hasConcept C58471807 @default.
- W2022894635 hasConcept C71924100 @default.
- W2022894635 hasConceptScore W2022894635C126322002 @default.
- W2022894635 hasConceptScore W2022894635C126838900 @default.
- W2022894635 hasConceptScore W2022894635C127413603 @default.
- W2022894635 hasConceptScore W2022894635C142724271 @default.
- W2022894635 hasConceptScore W2022894635C153180895 @default.
- W2022894635 hasConceptScore W2022894635C154945302 @default.
- W2022894635 hasConceptScore W2022894635C194789388 @default.
- W2022894635 hasConceptScore W2022894635C199639397 @default.
- W2022894635 hasConceptScore W2022894635C2776715762 @default.
- W2022894635 hasConceptScore W2022894635C2779549770 @default.
- W2022894635 hasConceptScore W2022894635C2781137159 @default.
- W2022894635 hasConceptScore W2022894635C2781305912 @default.
- W2022894635 hasConceptScore W2022894635C36454342 @default.
- W2022894635 hasConceptScore W2022894635C41008148 @default.
- W2022894635 hasConceptScore W2022894635C50644808 @default.
- W2022894635 hasConceptScore W2022894635C58471807 @default.
- W2022894635 hasConceptScore W2022894635C71924100 @default.
- W2022894635 hasIssue "6" @default.
- W2022894635 hasLocation W20228946351 @default.
- W2022894635 hasLocation W20228946352 @default.
- W2022894635 hasLocation W20228946353 @default.
- W2022894635 hasLocation W20228946354 @default.
- W2022894635 hasOpenAccess W2022894635 @default.
- W2022894635 hasPrimaryLocation W20228946351 @default.
- W2022894635 hasRelatedWork W2007782449 @default.
- W2022894635 hasRelatedWork W2049380073 @default.
- W2022894635 hasRelatedWork W2077507726 @default.
- W2022894635 hasRelatedWork W2355737920 @default.
- W2022894635 hasRelatedWork W2357978846 @default.
- W2022894635 hasRelatedWork W2363440013 @default.