Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022894675> ?p ?o ?g. }
- W2022894675 endingPage "1450009" @default.
- W2022894675 startingPage "1450009" @default.
- W2022894675 abstract "Feature selection is a multi-objective problem, where the two main objectives are to maximize the classification accuracy and minimize the number of features. However, most of the existing algorithms belong to single objective, wrapper approaches. In this work, we investigate the use of binary particle swarm optimization (BPSO) and probabilistic rough set (PRS) for multi-objective feature selection. We use PRS to propose a new measure for the number of features based on which a new filter based single objective algorithm (PSOPRSE) is developed. Then a new filter-based multi-objective algorithm (MORSE) is proposed, which aims to maximize a measure for the classification performance and minimize the new measure for the number of features. MORSE is examined and compared with PSOPRSE, two existing PSO-based single objective algorithms, two traditional methods, and the only existing BPSO and PRS-based multi-objective algorithm (MORSN). Experiments have been conducted on six commonly used discrete datasets with a relative small number of features and six continuous datasets with a large number of features. The classification performance of the selected feature subsets are evaluated by three classification algorithms (decision trees, Naïve Bayes, and k-nearest neighbors). The results show that the proposed algorithms can automatically select a smaller number of features and achieve similar or better classification performance than using all features. PSOPRSE achieves better performance than the other two PSO-based single objective algorithms and the two traditional methods. MORSN and MORSE outperform all these five single objective algorithms in terms of both the classification performance and the number of features. MORSE achieves better classification performance than MORSN. These filter algorithms are general to the three different classification algorithms." @default.
- W2022894675 created "2016-06-24" @default.
- W2022894675 creator A5051439492 @default.
- W2022894675 creator A5056624500 @default.
- W2022894675 creator A5063402368 @default.
- W2022894675 creator A5065533636 @default.
- W2022894675 creator A5077569089 @default.
- W2022894675 date "2014-06-01" @default.
- W2022894675 modified "2023-10-16" @default.
- W2022894675 title "BINARY PSO AND ROUGH SET THEORY FOR FEATURE SELECTION: A MULTI-OBJECTIVE FILTER BASED APPROACH" @default.
- W2022894675 cites W1963626514 @default.
- W2022894675 cites W1983380373 @default.
- W2022894675 cites W2014732030 @default.
- W2022894675 cites W2014915963 @default.
- W2022894675 cites W2030363461 @default.
- W2022894675 cites W2039537889 @default.
- W2022894675 cites W2045358009 @default.
- W2022894675 cites W2051387528 @default.
- W2022894675 cites W2069928051 @default.
- W2022894675 cites W2072026441 @default.
- W2022894675 cites W2076046792 @default.
- W2022894675 cites W2081719476 @default.
- W2022894675 cites W2090727353 @default.
- W2022894675 cites W2120216197 @default.
- W2022894675 cites W2124258777 @default.
- W2022894675 cites W2133462743 @default.
- W2022894675 cites W2165885026 @default.
- W2022894675 doi "https://doi.org/10.1142/s1469026814500096" @default.
- W2022894675 hasPublicationYear "2014" @default.
- W2022894675 type Work @default.
- W2022894675 sameAs 2022894675 @default.
- W2022894675 citedByCount "45" @default.
- W2022894675 countsByYear W20228946752014 @default.
- W2022894675 countsByYear W20228946752015 @default.
- W2022894675 countsByYear W20228946752016 @default.
- W2022894675 countsByYear W20228946752017 @default.
- W2022894675 countsByYear W20228946752018 @default.
- W2022894675 countsByYear W20228946752019 @default.
- W2022894675 countsByYear W20228946752020 @default.
- W2022894675 countsByYear W20228946752021 @default.
- W2022894675 countsByYear W20228946752022 @default.
- W2022894675 crossrefType "journal-article" @default.
- W2022894675 hasAuthorship W2022894675A5051439492 @default.
- W2022894675 hasAuthorship W2022894675A5056624500 @default.
- W2022894675 hasAuthorship W2022894675A5063402368 @default.
- W2022894675 hasAuthorship W2022894675A5065533636 @default.
- W2022894675 hasAuthorship W2022894675A5077569089 @default.
- W2022894675 hasConcept C106131492 @default.
- W2022894675 hasConcept C111012933 @default.
- W2022894675 hasConcept C11413529 @default.
- W2022894675 hasConcept C12267149 @default.
- W2022894675 hasConcept C124101348 @default.
- W2022894675 hasConcept C138885662 @default.
- W2022894675 hasConcept C148483581 @default.
- W2022894675 hasConcept C153180895 @default.
- W2022894675 hasConcept C154945302 @default.
- W2022894675 hasConcept C2776401178 @default.
- W2022894675 hasConcept C2780009758 @default.
- W2022894675 hasConcept C31972630 @default.
- W2022894675 hasConcept C41008148 @default.
- W2022894675 hasConcept C41895202 @default.
- W2022894675 hasConcept C49937458 @default.
- W2022894675 hasConcept C52001869 @default.
- W2022894675 hasConcept C66905080 @default.
- W2022894675 hasConcept C85617194 @default.
- W2022894675 hasConceptScore W2022894675C106131492 @default.
- W2022894675 hasConceptScore W2022894675C111012933 @default.
- W2022894675 hasConceptScore W2022894675C11413529 @default.
- W2022894675 hasConceptScore W2022894675C12267149 @default.
- W2022894675 hasConceptScore W2022894675C124101348 @default.
- W2022894675 hasConceptScore W2022894675C138885662 @default.
- W2022894675 hasConceptScore W2022894675C148483581 @default.
- W2022894675 hasConceptScore W2022894675C153180895 @default.
- W2022894675 hasConceptScore W2022894675C154945302 @default.
- W2022894675 hasConceptScore W2022894675C2776401178 @default.
- W2022894675 hasConceptScore W2022894675C2780009758 @default.
- W2022894675 hasConceptScore W2022894675C31972630 @default.
- W2022894675 hasConceptScore W2022894675C41008148 @default.
- W2022894675 hasConceptScore W2022894675C41895202 @default.
- W2022894675 hasConceptScore W2022894675C49937458 @default.
- W2022894675 hasConceptScore W2022894675C52001869 @default.
- W2022894675 hasConceptScore W2022894675C66905080 @default.
- W2022894675 hasConceptScore W2022894675C85617194 @default.
- W2022894675 hasIssue "02" @default.
- W2022894675 hasLocation W20228946751 @default.
- W2022894675 hasOpenAccess W2022894675 @default.
- W2022894675 hasPrimaryLocation W20228946751 @default.
- W2022894675 hasRelatedWork W162467263 @default.
- W2022894675 hasRelatedWork W1974941418 @default.
- W2022894675 hasRelatedWork W1980560915 @default.
- W2022894675 hasRelatedWork W2022894675 @default.
- W2022894675 hasRelatedWork W2069393241 @default.
- W2022894675 hasRelatedWork W2352657000 @default.
- W2022894675 hasRelatedWork W2357060578 @default.
- W2022894675 hasRelatedWork W2395566374 @default.
- W2022894675 hasRelatedWork W2114089515 @default.
- W2022894675 hasRelatedWork W2345184372 @default.
- W2022894675 hasVolume "13" @default.