Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022898897> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2022898897 abstract "Granular computing is a paradigm destined to study how to compute with granules of knowledge that are collective objects formed from individual objects by means of a similarity measure. The idea of granulation was put forth by Lotfi Zadeh: granulation is inculcated in fuzzy set theory by the very definition of a fuzzy set and inverse values of fuzzy membership functions are elementary forms of granules. Granulation is an essential ingredient of humane thinking and it is playing a vital role in cognitive processes which are studied in Cognitive Informatics as emulations by computing machines of real cognitive processes in humane thinking. Rough inclusions establish a form of similarity relations that are reflexive but not necessarily symmetric; in applications presented in this work, we restrict ourselves to symmetric rough inclusions based on the set <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>DIS(u,v) = {α ε A : α(μ) ≠ α(v)}</i> of attributes discerning between given objects <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>u,v</i> without any additional parameters. Our rough inclusions are induced in their basic forms in a unified framework of continuous t-norms; in this work we apply the rough inclusion <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>μ<sub>L</sub></i> induced from the Lukasiewicz t-norm <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>L(x,y) = max{0,x+y-1}</i> by means <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>g(|DIS(u,v)|/|A|) = |IND(u,v)|/|A|</i> where <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>g</i> is the function that occurs in the functional representation of <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>L and IND(u,v)= U x UDIS(u,v)</i> . Granules of knowledge induced by rough inclusions are formed as neighborhoods of given radii of objects by means of the class operator of mereology. L.Polkowski in his feature talks at conferences 2005, 2006 IEEE GrC, put forth the hypothesis that similarity of objects in a granule should lead to closeness of sufficiently many attribute values on objects in the granule and thus averaging in a sense values of attributes on objects in a granule should lead to a new data set, the granular one, which should preserve information encoded in the original data set to a satisfactory degree. This hypothesis is borne out in this work with tests on real data sets. We also address the problem of missing values in data sets; this problem has been addressed within rough set theory by many authors, e.g., Grzymala-Busse, Kryszkiewicz, Rybinski. We propose a novel approach to this problem: an object with missing values is absorbed in a granule and takes part in determining a granular object; then, at classification stage, objects with missing values are matched against closest granular objects. We present details of this approach along with tests on real data sets." @default.
- W2022898897 created "2016-06-24" @default.
- W2022898897 creator A5006908029 @default.
- W2022898897 creator A5012433970 @default.
- W2022898897 date "2007-08-01" @default.
- W2022898897 modified "2023-09-23" @default.
- W2022898897 title "Granular Computing: Granular Classifiers and Missing Values" @default.
- W2022898897 cites W107910782 @default.
- W2022898897 cites W1508620301 @default.
- W2022898897 cites W1543303889 @default.
- W2022898897 cites W1602737043 @default.
- W2022898897 cites W1969998140 @default.
- W2022898897 cites W2010522779 @default.
- W2022898897 cites W2016487173 @default.
- W2022898897 cites W2087740657 @default.
- W2022898897 cites W2098034130 @default.
- W2022898897 cites W2099024249 @default.
- W2022898897 cites W2103514965 @default.
- W2022898897 cites W2110182592 @default.
- W2022898897 cites W2151355822 @default.
- W2022898897 cites W2171580113 @default.
- W2022898897 cites W2496376991 @default.
- W2022898897 cites W4233751862 @default.
- W2022898897 doi "https://doi.org/10.1109/coginf.2007.4341890" @default.
- W2022898897 hasPublicationYear "2007" @default.
- W2022898897 type Work @default.
- W2022898897 sameAs 2022898897 @default.
- W2022898897 citedByCount "16" @default.
- W2022898897 countsByYear W20228988972014 @default.
- W2022898897 countsByYear W20228988972016 @default.
- W2022898897 countsByYear W20228988972018 @default.
- W2022898897 countsByYear W20228988972019 @default.
- W2022898897 countsByYear W20228988972021 @default.
- W2022898897 countsByYear W20228988972022 @default.
- W2022898897 crossrefType "proceedings-article" @default.
- W2022898897 hasAuthorship W2022898897A5006908029 @default.
- W2022898897 hasAuthorship W2022898897A5012433970 @default.
- W2022898897 hasConcept C103278499 @default.
- W2022898897 hasConcept C111012933 @default.
- W2022898897 hasConcept C115961682 @default.
- W2022898897 hasConcept C136119220 @default.
- W2022898897 hasConcept C154945302 @default.
- W2022898897 hasConcept C17209119 @default.
- W2022898897 hasConcept C177264268 @default.
- W2022898897 hasConcept C199360897 @default.
- W2022898897 hasConcept C202444582 @default.
- W2022898897 hasConcept C207467116 @default.
- W2022898897 hasConcept C2524010 @default.
- W2022898897 hasConcept C33923547 @default.
- W2022898897 hasConcept C41008148 @default.
- W2022898897 hasConcept C42011625 @default.
- W2022898897 hasConcept C58166 @default.
- W2022898897 hasConceptScore W2022898897C103278499 @default.
- W2022898897 hasConceptScore W2022898897C111012933 @default.
- W2022898897 hasConceptScore W2022898897C115961682 @default.
- W2022898897 hasConceptScore W2022898897C136119220 @default.
- W2022898897 hasConceptScore W2022898897C154945302 @default.
- W2022898897 hasConceptScore W2022898897C17209119 @default.
- W2022898897 hasConceptScore W2022898897C177264268 @default.
- W2022898897 hasConceptScore W2022898897C199360897 @default.
- W2022898897 hasConceptScore W2022898897C202444582 @default.
- W2022898897 hasConceptScore W2022898897C207467116 @default.
- W2022898897 hasConceptScore W2022898897C2524010 @default.
- W2022898897 hasConceptScore W2022898897C33923547 @default.
- W2022898897 hasConceptScore W2022898897C41008148 @default.
- W2022898897 hasConceptScore W2022898897C42011625 @default.
- W2022898897 hasConceptScore W2022898897C58166 @default.
- W2022898897 hasLocation W20228988971 @default.
- W2022898897 hasOpenAccess W2022898897 @default.
- W2022898897 hasPrimaryLocation W20228988971 @default.
- W2022898897 hasRelatedWork W1660791202 @default.
- W2022898897 hasRelatedWork W2085182244 @default.
- W2022898897 hasRelatedWork W2147910870 @default.
- W2022898897 hasRelatedWork W2165770483 @default.
- W2022898897 hasRelatedWork W2359626492 @default.
- W2022898897 hasRelatedWork W2391870129 @default.
- W2022898897 hasRelatedWork W2393937869 @default.
- W2022898897 hasRelatedWork W2766401420 @default.
- W2022898897 hasRelatedWork W327654139 @default.
- W2022898897 hasRelatedWork W2507591177 @default.
- W2022898897 isParatext "false" @default.
- W2022898897 isRetracted "false" @default.
- W2022898897 magId "2022898897" @default.
- W2022898897 workType "article" @default.