Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022911909> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2022911909 abstract "Indirect branches have become increasingly common in modular programs written in modern object-oriented languages and virtual machine based runtime systems. Unfortunately, the prediction accuracy of indirect branches has not improved as much as that of conditional branches. Furthermore, previously proposed indirect branch predictors usually require a significant amount of extra hardware storage and complexity, which makes them less attractive to implement.This paper proposes a new technique for handling indirect branches, called Virtual Program Counter (VPC) prediction. The key idea of VPC prediction is to treat a single indirect branch as multiple virtual conditional branches in hardware for prediction purposes. Our technique predicts each of the virtual conditional branches using the existing conditional branch prediction hardware. Thus, no separate storage structure is required for predicting indirect branch targets.Our evaluation shows that VPC prediction improves average performance by 26.7% compared to a commonly-used branch target buffer based predictor on 12 indirect branch intensive applications. VPC prediction achieves the performance improvement provided by at least a 12KB (and usually a 192KB) tagged target cache predictor on half of the examined applications. We show that VPC prediction can be used with any existing conditional branch prediction mechanism and that the accuracy of VPC prediction improves when a more accurate conditional branch predictor is used." @default.
- W2022911909 created "2016-06-24" @default.
- W2022911909 creator A5000822269 @default.
- W2022911909 creator A5019791712 @default.
- W2022911909 creator A5040199329 @default.
- W2022911909 creator A5050695684 @default.
- W2022911909 creator A5052796636 @default.
- W2022911909 creator A5070360563 @default.
- W2022911909 date "2007-06-09" @default.
- W2022911909 modified "2023-10-17" @default.
- W2022911909 title "VPC prediction" @default.
- W2022911909 cites W1736634110 @default.
- W2022911909 cites W1982322251 @default.
- W2022911909 cites W1993318777 @default.
- W2022911909 cites W2027657506 @default.
- W2022911909 cites W2067310734 @default.
- W2022911909 cites W2093334386 @default.
- W2022911909 cites W2093760065 @default.
- W2022911909 cites W2095390121 @default.
- W2022911909 cites W2099424556 @default.
- W2022911909 cites W2108713760 @default.
- W2022911909 cites W2117226389 @default.
- W2022911909 cites W2119077081 @default.
- W2022911909 cites W2119232722 @default.
- W2022911909 cites W2120635877 @default.
- W2022911909 cites W2134086144 @default.
- W2022911909 cites W2138351227 @default.
- W2022911909 cites W2150196852 @default.
- W2022911909 cites W2916411819 @default.
- W2022911909 cites W4233056919 @default.
- W2022911909 cites W4239813889 @default.
- W2022911909 cites W4252770880 @default.
- W2022911909 doi "https://doi.org/10.1145/1250662.1250715" @default.
- W2022911909 hasPublicationYear "2007" @default.
- W2022911909 type Work @default.
- W2022911909 sameAs 2022911909 @default.
- W2022911909 citedByCount "43" @default.
- W2022911909 countsByYear W20229119092012 @default.
- W2022911909 countsByYear W20229119092013 @default.
- W2022911909 countsByYear W20229119092014 @default.
- W2022911909 countsByYear W20229119092015 @default.
- W2022911909 countsByYear W20229119092016 @default.
- W2022911909 countsByYear W20229119092017 @default.
- W2022911909 countsByYear W20229119092018 @default.
- W2022911909 countsByYear W20229119092019 @default.
- W2022911909 countsByYear W20229119092021 @default.
- W2022911909 countsByYear W20229119092023 @default.
- W2022911909 crossrefType "proceedings-article" @default.
- W2022911909 hasAuthorship W2022911909A5000822269 @default.
- W2022911909 hasAuthorship W2022911909A5019791712 @default.
- W2022911909 hasAuthorship W2022911909A5040199329 @default.
- W2022911909 hasAuthorship W2022911909A5050695684 @default.
- W2022911909 hasAuthorship W2022911909A5052796636 @default.
- W2022911909 hasAuthorship W2022911909A5070360563 @default.
- W2022911909 hasConcept C154945302 @default.
- W2022911909 hasConcept C41008148 @default.
- W2022911909 hasConceptScore W2022911909C154945302 @default.
- W2022911909 hasConceptScore W2022911909C41008148 @default.
- W2022911909 hasLocation W20229119091 @default.
- W2022911909 hasOpenAccess W2022911909 @default.
- W2022911909 hasPrimaryLocation W20229119091 @default.
- W2022911909 hasRelatedWork W1596801655 @default.
- W2022911909 hasRelatedWork W2130043461 @default.
- W2022911909 hasRelatedWork W2350741829 @default.
- W2022911909 hasRelatedWork W2358668433 @default.
- W2022911909 hasRelatedWork W2376932109 @default.
- W2022911909 hasRelatedWork W2382290278 @default.
- W2022911909 hasRelatedWork W2390279801 @default.
- W2022911909 hasRelatedWork W2748952813 @default.
- W2022911909 hasRelatedWork W2899084033 @default.
- W2022911909 hasRelatedWork W2530322880 @default.
- W2022911909 isParatext "false" @default.
- W2022911909 isRetracted "false" @default.
- W2022911909 magId "2022911909" @default.
- W2022911909 workType "article" @default.