Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022921272> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2022921272 endingPage "647" @default.
- W2022921272 startingPage "629" @default.
- W2022921272 abstract "In this paper, optimal control problems with elliptic state equations and constraints on controls are considered. Also state constraints are briefly discussed. Barrier-penalty methods are applied to treat the occurring restrictions. In the case of finite-dimensional optimization problems, the considered methods have a linear rate of convergence in dependence of the penalty parameter. However, in the case of infinite-dimensional problems, as studied in this article, the direct application of finite-dimensional theory, as given in Grossmann and Zadlo [A general class of penalty/barrier path-following Newton methods for nonlinear programming, Optimization 54 (2005), pp. 161–190], would lead to mesh-dependent order one estimates that deteriorate if the discretization is refined. In this article a first rigorous proof is given for inequality constrained problems that in the case of quadratic penalties a mesh-independence principle holds, i.e. the first-order convergence estimate holds for the continuous problem as well as for discretized problems independently of the discretization step size. The penalty techniques rest upon the control approximate reduction as discussed, e.g. in Grossmann et al. [C. Grossmann, H. Kunz, and R. Meischner, Elliptic control by penalty techniques with control reduction, in System Modeling and Optimization, IFIP Advances in Information and Communication Technology, Vol. 312, Springer, Berlin, 2009, pp. 251–267; M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case, Comput. Optim. Appl. 30 (2005), pp. 45–61]. For the discretization conforming linear element discretization is applied. Some numerical examples illustrate and confirm the theoretical results." @default.
- W2022921272 created "2016-06-24" @default.
- W2022921272 creator A5022246730 @default.
- W2022921272 creator A5041353339 @default.
- W2022921272 date "2013-05-01" @default.
- W2022921272 modified "2023-10-07" @default.
- W2022921272 title "Mesh-independent convergence of penalty methods applied to optimal control with partial differential equations" @default.
- W2022921272 cites W1820125862 @default.
- W2022921272 cites W1981159109 @default.
- W2022921272 cites W2001502744 @default.
- W2022921272 cites W2031905727 @default.
- W2022921272 cites W2070584352 @default.
- W2022921272 cites W2075205943 @default.
- W2022921272 cites W2082380592 @default.
- W2022921272 cites W2094730756 @default.
- W2022921272 cites W2126428803 @default.
- W2022921272 cites W4251401614 @default.
- W2022921272 cites W601797399 @default.
- W2022921272 doi "https://doi.org/10.1080/02331934.2012.655693" @default.
- W2022921272 hasPublicationYear "2013" @default.
- W2022921272 type Work @default.
- W2022921272 sameAs 2022921272 @default.
- W2022921272 citedByCount "0" @default.
- W2022921272 crossrefType "journal-article" @default.
- W2022921272 hasAuthorship W2022921272A5022246730 @default.
- W2022921272 hasAuthorship W2022921272A5041353339 @default.
- W2022921272 hasConcept C105427703 @default.
- W2022921272 hasConcept C121332964 @default.
- W2022921272 hasConcept C126148662 @default.
- W2022921272 hasConcept C126255220 @default.
- W2022921272 hasConcept C134306372 @default.
- W2022921272 hasConcept C135628077 @default.
- W2022921272 hasConcept C161999928 @default.
- W2022921272 hasConcept C162324750 @default.
- W2022921272 hasConcept C2777303404 @default.
- W2022921272 hasConcept C28826006 @default.
- W2022921272 hasConcept C33923547 @default.
- W2022921272 hasConcept C50522688 @default.
- W2022921272 hasConcept C6180225 @default.
- W2022921272 hasConcept C73000952 @default.
- W2022921272 hasConcept C91575142 @default.
- W2022921272 hasConcept C97355855 @default.
- W2022921272 hasConceptScore W2022921272C105427703 @default.
- W2022921272 hasConceptScore W2022921272C121332964 @default.
- W2022921272 hasConceptScore W2022921272C126148662 @default.
- W2022921272 hasConceptScore W2022921272C126255220 @default.
- W2022921272 hasConceptScore W2022921272C134306372 @default.
- W2022921272 hasConceptScore W2022921272C135628077 @default.
- W2022921272 hasConceptScore W2022921272C161999928 @default.
- W2022921272 hasConceptScore W2022921272C162324750 @default.
- W2022921272 hasConceptScore W2022921272C2777303404 @default.
- W2022921272 hasConceptScore W2022921272C28826006 @default.
- W2022921272 hasConceptScore W2022921272C33923547 @default.
- W2022921272 hasConceptScore W2022921272C50522688 @default.
- W2022921272 hasConceptScore W2022921272C6180225 @default.
- W2022921272 hasConceptScore W2022921272C73000952 @default.
- W2022921272 hasConceptScore W2022921272C91575142 @default.
- W2022921272 hasConceptScore W2022921272C97355855 @default.
- W2022921272 hasIssue "5" @default.
- W2022921272 hasLocation W20229212721 @default.
- W2022921272 hasOpenAccess W2022921272 @default.
- W2022921272 hasPrimaryLocation W20229212721 @default.
- W2022921272 hasRelatedWork W2012186120 @default.
- W2022921272 hasRelatedWork W2046637502 @default.
- W2022921272 hasRelatedWork W2061750202 @default.
- W2022921272 hasRelatedWork W2073584852 @default.
- W2022921272 hasRelatedWork W2082231348 @default.
- W2022921272 hasRelatedWork W2100670034 @default.
- W2022921272 hasRelatedWork W2128707062 @default.
- W2022921272 hasRelatedWork W2329578275 @default.
- W2022921272 hasRelatedWork W3000757360 @default.
- W2022921272 hasRelatedWork W3005204046 @default.
- W2022921272 hasVolume "62" @default.
- W2022921272 isParatext "false" @default.
- W2022921272 isRetracted "false" @default.
- W2022921272 magId "2022921272" @default.
- W2022921272 workType "article" @default.