Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022921650> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2022921650 endingPage "374" @default.
- W2022921650 startingPage "368" @default.
- W2022921650 abstract "This paper addresses a novel hybrid data-fusion system for damage detection by integrating the data fusion technique, probabilistic neural network (PNN) models and measured modal data. The hybrid system proposed consists of three models, i.e. a feature-level fusion model, a decision-level fusion model and a single PNN classifier model without data fusion. Underlying this system is the idea that we can choose any of these models for damage detection under different circumstances, i.e. the feature-level model is preferable to other models when enormous data are made available through multi-sensors, whereas the confidence level for each of multi-sensors must be determined (as a prerequisite) before the adoption of the decision-level model, and lastly, the single model is applicable only when data collected is somehow limited as in the cases when few sensors have been installed or are known to be functioning properly. The hybrid system is suitable for damage detection and identification of a complex structure, especially when a huge volume of measured data, often with uncertainties, are involved, such as the data available from a large-scale structural health monitoring system. The numerical simulations conducted by applying the proposed system to detect both single- and multi-damage patterns of a 7-storey steel frame show that the hybrid data-fusion system cannot only reliably identify damage with different noise levels, but also have excellent anti-noise capability and robustness." @default.
- W2022921650 created "2016-06-24" @default.
- W2022921650 creator A5004404216 @default.
- W2022921650 creator A5068598159 @default.
- W2022921650 creator A5088595510 @default.
- W2022921650 date "2011-06-01" @default.
- W2022921650 modified "2023-09-26" @default.
- W2022921650 title "A hybrid data-fusion system using modal data and probabilistic neural network for damage detection" @default.
- W2022921650 cites W1964168965 @default.
- W2022921650 cites W1978201669 @default.
- W2022921650 cites W1979721602 @default.
- W2022921650 cites W2005368293 @default.
- W2022921650 cites W2006127591 @default.
- W2022921650 cites W2008266158 @default.
- W2022921650 cites W2018672383 @default.
- W2022921650 cites W2034686567 @default.
- W2022921650 cites W2041706591 @default.
- W2022921650 cites W2047512629 @default.
- W2022921650 cites W2051551764 @default.
- W2022921650 cites W2056453516 @default.
- W2022921650 cites W2066301115 @default.
- W2022921650 cites W2073909318 @default.
- W2022921650 cites W2078777235 @default.
- W2022921650 cites W2112919847 @default.
- W2022921650 cites W2158275940 @default.
- W2022921650 cites W2159357605 @default.
- W2022921650 cites W2160767978 @default.
- W2022921650 cites W2168847089 @default.
- W2022921650 cites W2585663194 @default.
- W2022921650 doi "https://doi.org/10.1016/j.advengsoft.2011.03.002" @default.
- W2022921650 hasPublicationYear "2011" @default.
- W2022921650 type Work @default.
- W2022921650 sameAs 2022921650 @default.
- W2022921650 citedByCount "26" @default.
- W2022921650 countsByYear W20229216502012 @default.
- W2022921650 countsByYear W20229216502013 @default.
- W2022921650 countsByYear W20229216502014 @default.
- W2022921650 countsByYear W20229216502015 @default.
- W2022921650 countsByYear W20229216502016 @default.
- W2022921650 countsByYear W20229216502017 @default.
- W2022921650 countsByYear W20229216502018 @default.
- W2022921650 countsByYear W20229216502019 @default.
- W2022921650 countsByYear W20229216502020 @default.
- W2022921650 countsByYear W20229216502021 @default.
- W2022921650 countsByYear W20229216502022 @default.
- W2022921650 crossrefType "journal-article" @default.
- W2022921650 hasAuthorship W2022921650A5004404216 @default.
- W2022921650 hasAuthorship W2022921650A5068598159 @default.
- W2022921650 hasAuthorship W2022921650A5088595510 @default.
- W2022921650 hasConcept C119857082 @default.
- W2022921650 hasConcept C124101348 @default.
- W2022921650 hasConcept C138885662 @default.
- W2022921650 hasConcept C154945302 @default.
- W2022921650 hasConcept C158525013 @default.
- W2022921650 hasConcept C188027245 @default.
- W2022921650 hasConcept C192562407 @default.
- W2022921650 hasConcept C33954974 @default.
- W2022921650 hasConcept C41008148 @default.
- W2022921650 hasConcept C41895202 @default.
- W2022921650 hasConcept C49937458 @default.
- W2022921650 hasConcept C50644808 @default.
- W2022921650 hasConcept C71139939 @default.
- W2022921650 hasConceptScore W2022921650C119857082 @default.
- W2022921650 hasConceptScore W2022921650C124101348 @default.
- W2022921650 hasConceptScore W2022921650C138885662 @default.
- W2022921650 hasConceptScore W2022921650C154945302 @default.
- W2022921650 hasConceptScore W2022921650C158525013 @default.
- W2022921650 hasConceptScore W2022921650C188027245 @default.
- W2022921650 hasConceptScore W2022921650C192562407 @default.
- W2022921650 hasConceptScore W2022921650C33954974 @default.
- W2022921650 hasConceptScore W2022921650C41008148 @default.
- W2022921650 hasConceptScore W2022921650C41895202 @default.
- W2022921650 hasConceptScore W2022921650C49937458 @default.
- W2022921650 hasConceptScore W2022921650C50644808 @default.
- W2022921650 hasConceptScore W2022921650C71139939 @default.
- W2022921650 hasIssue "6" @default.
- W2022921650 hasLocation W20229216501 @default.
- W2022921650 hasOpenAccess W2022921650 @default.
- W2022921650 hasPrimaryLocation W20229216501 @default.
- W2022921650 hasRelatedWork W2066301115 @default.
- W2022921650 hasRelatedWork W2340767234 @default.
- W2022921650 hasRelatedWork W2347495020 @default.
- W2022921650 hasRelatedWork W2358725331 @default.
- W2022921650 hasRelatedWork W2366821764 @default.
- W2022921650 hasRelatedWork W2370307849 @default.
- W2022921650 hasRelatedWork W2385582644 @default.
- W2022921650 hasRelatedWork W3154948518 @default.
- W2022921650 hasRelatedWork W1629725936 @default.
- W2022921650 hasRelatedWork W1843179423 @default.
- W2022921650 hasVolume "42" @default.
- W2022921650 isParatext "false" @default.
- W2022921650 isRetracted "false" @default.
- W2022921650 magId "2022921650" @default.
- W2022921650 workType "article" @default.