Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022922462> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2022922462 abstract "Machine learning techniques are an important tool for diagnosing a number of diseases, as has been shown by the recent literature. Hospitals and medical clinics have a huge amount of data about the treatment of their patients, however, rarely analysis of these data is performed in order to extract intrinsic information aimed at modeling a specific problem. This work presents an analysis of medical data aimed at determining whether children patients are cardiac or not. To this end, raw data was collected at a Brazilian local hospital to be preprocessed in order to build the classification models. Only non invasive information were used, such as height, weight, gender and birthday date to create another set of derived variables such as BMI (Body Mass Index) to support the classification phase. However, the collected data was shown to be very imbalanced. Aimed at treat this problem, many tecniques were employed and one new approach was proposed. The results shown that the proposed approach outperforms the other methods in three out of four evaluation metrics." @default.
- W2022922462 created "2016-06-24" @default.
- W2022922462 creator A5007892716 @default.
- W2022922462 creator A5014085344 @default.
- W2022922462 creator A5042831661 @default.
- W2022922462 creator A5070984576 @default.
- W2022922462 creator A5084458779 @default.
- W2022922462 date "2013-08-01" @default.
- W2022922462 modified "2023-09-23" @default.
- W2022922462 title "Preprocessing unbalanced data using weighted support vector machines for prediction of heart disease in children" @default.
- W2022922462 cites W1510073064 @default.
- W2022922462 cites W1975273877 @default.
- W2022922462 cites W1982165141 @default.
- W2022922462 cites W1983024255 @default.
- W2022922462 cites W2004288989 @default.
- W2022922462 cites W2017900294 @default.
- W2022922462 cites W2028798134 @default.
- W2022922462 cites W2044029912 @default.
- W2022922462 cites W2059995760 @default.
- W2022922462 cites W2069141332 @default.
- W2022922462 cites W2076723282 @default.
- W2022922462 cites W2080049039 @default.
- W2022922462 cites W2094328197 @default.
- W2022922462 cites W2095000582 @default.
- W2022922462 cites W2123380119 @default.
- W2022922462 cites W2143800489 @default.
- W2022922462 cites W2148143831 @default.
- W2022922462 cites W2158698691 @default.
- W2022922462 cites W2162823535 @default.
- W2022922462 cites W2912391306 @default.
- W2022922462 cites W4233104424 @default.
- W2022922462 cites W4236137412 @default.
- W2022922462 cites W4239510810 @default.
- W2022922462 doi "https://doi.org/10.1109/ijcnn.2013.6706947" @default.
- W2022922462 hasPublicationYear "2013" @default.
- W2022922462 type Work @default.
- W2022922462 sameAs 2022922462 @default.
- W2022922462 citedByCount "5" @default.
- W2022922462 countsByYear W20229224622015 @default.
- W2022922462 countsByYear W20229224622019 @default.
- W2022922462 crossrefType "proceedings-article" @default.
- W2022922462 hasAuthorship W2022922462A5007892716 @default.
- W2022922462 hasAuthorship W2022922462A5014085344 @default.
- W2022922462 hasAuthorship W2022922462A5042831661 @default.
- W2022922462 hasAuthorship W2022922462A5070984576 @default.
- W2022922462 hasAuthorship W2022922462A5084458779 @default.
- W2022922462 hasConcept C10551718 @default.
- W2022922462 hasConcept C119857082 @default.
- W2022922462 hasConcept C12267149 @default.
- W2022922462 hasConcept C124101348 @default.
- W2022922462 hasConcept C132964779 @default.
- W2022922462 hasConcept C154945302 @default.
- W2022922462 hasConcept C177264268 @default.
- W2022922462 hasConcept C199360897 @default.
- W2022922462 hasConcept C34736171 @default.
- W2022922462 hasConcept C41008148 @default.
- W2022922462 hasConcept C58489278 @default.
- W2022922462 hasConceptScore W2022922462C10551718 @default.
- W2022922462 hasConceptScore W2022922462C119857082 @default.
- W2022922462 hasConceptScore W2022922462C12267149 @default.
- W2022922462 hasConceptScore W2022922462C124101348 @default.
- W2022922462 hasConceptScore W2022922462C132964779 @default.
- W2022922462 hasConceptScore W2022922462C154945302 @default.
- W2022922462 hasConceptScore W2022922462C177264268 @default.
- W2022922462 hasConceptScore W2022922462C199360897 @default.
- W2022922462 hasConceptScore W2022922462C34736171 @default.
- W2022922462 hasConceptScore W2022922462C41008148 @default.
- W2022922462 hasConceptScore W2022922462C58489278 @default.
- W2022922462 hasLocation W20229224621 @default.
- W2022922462 hasOpenAccess W2022922462 @default.
- W2022922462 hasPrimaryLocation W20229224621 @default.
- W2022922462 hasRelatedWork W2150366819 @default.
- W2022922462 hasRelatedWork W2414493750 @default.
- W2022922462 hasRelatedWork W3086422166 @default.
- W2022922462 hasRelatedWork W31185250 @default.
- W2022922462 hasRelatedWork W3138271675 @default.
- W2022922462 hasRelatedWork W4213068940 @default.
- W2022922462 hasRelatedWork W4231149697 @default.
- W2022922462 hasRelatedWork W4234428536 @default.
- W2022922462 hasRelatedWork W4239030218 @default.
- W2022922462 hasRelatedWork W3016972457 @default.
- W2022922462 isParatext "false" @default.
- W2022922462 isRetracted "false" @default.
- W2022922462 magId "2022922462" @default.
- W2022922462 workType "article" @default.