Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022947079> ?p ?o ?g. }
- W2022947079 endingPage "3004" @default.
- W2022947079 startingPage "2995" @default.
- W2022947079 abstract "Mammography is the only technique currently used for detecting microcalcification (MC) clusters, an early indicator of breast cancer. However, mammographic images superimpose a three-dimensional compressed breast image onto two-dimensional projection views, resulting in overlapped anatomical breast structures that may obscure the detection and visualization of MCs. One possible solution to this problem is the use of cone beam computed tomography (CBCT) with a flat-panel (FP) digital detector. Although feasibility studies of CBCT techniques for breast imaging have yielded promising results, they have not shown how radiation dose and x-ray tube voltage affect the accuracy with which MCs are detected by CBCT experimentally. We therefore conducted a phantom study using a FP-based CBCT system with various mean glandular doses and kVp values. An experimental CBCT scanner was constructed with a data acquisition rate of 7.5 frames/s. 10.5 and 14.5 cm diameter breast phantoms made of gelatin were used to simulate uncompressed breasts consisting of 100% glandular tissue. Eight different MC sizes of calcium carbonate grains, ranging from 180-200 microm to 355-425 microm, were used to simulate MCs. MCs of the same size were arranged to form a 5 x 5 MC cluster and embedded in the breast phantoms. These MC clusters were positioned at 2.8 cm away from the center of the breast phantoms. The phantoms were imaged at 60, 80, and 100 kVp. With a single scan (360 degrees), 300 projection images were acquired with 0.5 x, 1x, and 2x mean glandular dose limit for 10.5 cm phantom and with 1x, 2x, and 4x for 14.5 cm phantom. A Feldkamp algorithm with a pure ramp filter was used for image reconstruction. The normalized noise level was calculated for each x-ray tube voltage and dose level. The image quality of the CBCT images was evaluated by counting the number of visible MCs for each MC cluster for various conditions. The average percentage of the visible MCs was computed and plotted as a function of the MGD, the kVp, and the average MC size. The results showed that the MC visibility increased with the MGD significantly but decreased with the breast size. The results also showed that the x-ray tube voltage affects the detection of MCs under different circumstances. With a 50% threshold, the minimum detectable MC sizes for the 10.5 cm phantom were 348(+/-2), 288(+/-7), 257(+/-2) microm at 3, 6, and 12 mGy, respectively. Those for the 14.5 cm phantom were 355 (+/-1), 307 (+/-7), 275 (+/-5) microm at 6, 12, and 24 mGy, respectively. With a 75% threshold, the minimum detectable MC sizes for the 10.5 cm phantom were 367 (+/-1), 316 (+/-7), 265 (+/-3) microm at 3, 6, and 12 mGy, respectively. Those for the 14.5 cm phantom were 377 (+/-3), 334 (+/-5), 300 (+/-2) microm at 6, 12, and 24 mGy, respectively." @default.
- W2022947079 created "2016-06-24" @default.
- W2022947079 creator A5006696681 @default.
- W2022947079 creator A5013252766 @default.
- W2022947079 creator A5035160285 @default.
- W2022947079 creator A5041078152 @default.
- W2022947079 creator A5043870061 @default.
- W2022947079 creator A5054223453 @default.
- W2022947079 creator A5068961920 @default.
- W2022947079 creator A5080464782 @default.
- W2022947079 creator A5086990455 @default.
- W2022947079 creator A5089309447 @default.
- W2022947079 date "2007-06-26" @default.
- W2022947079 modified "2023-10-06" @default.
- W2022947079 title "Visibility of microcalcification in cone beam breast CT: Effects of x-ray tube voltage and radiation dose" @default.
- W2022947079 cites W1964564394 @default.
- W2022947079 cites W1969300166 @default.
- W2022947079 cites W1970680467 @default.
- W2022947079 cites W1981689360 @default.
- W2022947079 cites W1984553821 @default.
- W2022947079 cites W1986419674 @default.
- W2022947079 cites W1989693788 @default.
- W2022947079 cites W1990475011 @default.
- W2022947079 cites W1991951294 @default.
- W2022947079 cites W2009036406 @default.
- W2022947079 cites W2011899794 @default.
- W2022947079 cites W2012394372 @default.
- W2022947079 cites W2021523624 @default.
- W2022947079 cites W2028709541 @default.
- W2022947079 cites W2031050599 @default.
- W2022947079 cites W2031948043 @default.
- W2022947079 cites W2032138177 @default.
- W2022947079 cites W2033664752 @default.
- W2022947079 cites W2034237252 @default.
- W2022947079 cites W2040191425 @default.
- W2022947079 cites W2046288541 @default.
- W2022947079 cites W2046836946 @default.
- W2022947079 cites W2050209696 @default.
- W2022947079 cites W2053122826 @default.
- W2022947079 cites W2055904889 @default.
- W2022947079 cites W2061451925 @default.
- W2022947079 cites W2064634606 @default.
- W2022947079 cites W2071187617 @default.
- W2022947079 cites W2073046599 @default.
- W2022947079 cites W2088471891 @default.
- W2022947079 cites W2106783460 @default.
- W2022947079 cites W2123683167 @default.
- W2022947079 cites W2162332320 @default.
- W2022947079 doi "https://doi.org/10.1118/1.2745921" @default.
- W2022947079 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2867610" @default.
- W2022947079 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17822008" @default.
- W2022947079 hasPublicationYear "2007" @default.
- W2022947079 type Work @default.
- W2022947079 sameAs 2022947079 @default.
- W2022947079 citedByCount "69" @default.
- W2022947079 countsByYear W20229470792012 @default.
- W2022947079 countsByYear W20229470792013 @default.
- W2022947079 countsByYear W20229470792014 @default.
- W2022947079 countsByYear W20229470792015 @default.
- W2022947079 countsByYear W20229470792016 @default.
- W2022947079 countsByYear W20229470792017 @default.
- W2022947079 countsByYear W20229470792018 @default.
- W2022947079 countsByYear W20229470792019 @default.
- W2022947079 countsByYear W20229470792020 @default.
- W2022947079 countsByYear W20229470792021 @default.
- W2022947079 countsByYear W20229470792022 @default.
- W2022947079 crossrefType "journal-article" @default.
- W2022947079 hasAuthorship W2022947079A5006696681 @default.
- W2022947079 hasAuthorship W2022947079A5013252766 @default.
- W2022947079 hasAuthorship W2022947079A5035160285 @default.
- W2022947079 hasAuthorship W2022947079A5041078152 @default.
- W2022947079 hasAuthorship W2022947079A5043870061 @default.
- W2022947079 hasAuthorship W2022947079A5054223453 @default.
- W2022947079 hasAuthorship W2022947079A5068961920 @default.
- W2022947079 hasAuthorship W2022947079A5080464782 @default.
- W2022947079 hasAuthorship W2022947079A5086990455 @default.
- W2022947079 hasAuthorship W2022947079A5089309447 @default.
- W2022947079 hasBestOaLocation W20229470792 @default.
- W2022947079 hasConcept C104293457 @default.
- W2022947079 hasConcept C120665830 @default.
- W2022947079 hasConcept C121332964 @default.
- W2022947079 hasConcept C121608353 @default.
- W2022947079 hasConcept C126322002 @default.
- W2022947079 hasConcept C126838900 @default.
- W2022947079 hasConcept C136229726 @default.
- W2022947079 hasConcept C192562407 @default.
- W2022947079 hasConcept C2779751349 @default.
- W2022947079 hasConcept C2779813781 @default.
- W2022947079 hasConcept C2780472235 @default.
- W2022947079 hasConcept C2781129008 @default.
- W2022947079 hasConcept C2989005 @default.
- W2022947079 hasConcept C31601959 @default.
- W2022947079 hasConcept C530470458 @default.
- W2022947079 hasConcept C544519230 @default.
- W2022947079 hasConcept C71924100 @default.
- W2022947079 hasConcept C75088862 @default.
- W2022947079 hasConcept C94898600 @default.
- W2022947079 hasConcept C94915269 @default.