Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022956940> ?p ?o ?g. }
- W2022956940 endingPage "29" @default.
- W2022956940 startingPage "13" @default.
- W2022956940 abstract "Speleothems are one of the most intensively explored continental archives for palaeoclimate variability. The parameters, however, that control speleothem petrography and its changes with time and space, specifically calcite crystal morphology and carbonate mineralogy, are still poorly understood. In order to shed light on processes and their products, precipitation experiments of recent carbonate crystals on watch glasses and glass plates were performed in seven selected caves. Drip water sites were analysed for their fluid Mg/Ca molar ratio, pH, degree of saturation for calcite and aragonite and drip rates. Corresponding precipitates were analysed with respect to their mineralogy, calcite crystal morphology and Mg/Ca molar ratio of calcite. The following results are found: High fluid Mg/Ca ratios are found only for caves situated in dolostone, thus the hostrock lithology indirectly controls the carbonate mineralogy and calcite crystal morphology of speleothems. The precipitation of aragonite in place of calcite occurred only in dolostone caves and is bound to very specific conditions. These are: high fluid Mg/Ca ratios (⩾0.5), high fluid pH (>8.2) and low fluid saturation indices for calcite (<0.8). These specific conditions are induced by slow drip rates of <0.2 ml/min as often under more arid conditions, causing the precipitation of calcite/aragonite prior to reaching the stalagmite top. Due to this, fluid chemistry is altered, which in turn leads to changes in carbonate mineralogy and geochemistry on the stalagmite top. Calcite growth is inhibited at high fluid Mg/Ca ratios and hence, aragonite precipitation is kinetically stabilised. An increase of the drip water Mg/Ca ratio leads to an increased incorporation of Mg2+ into the calcite crystal lattice and thus, to a change in calcite crystal morphology. Four distinctive changes occur with increasing Mg2+ incorporation: (i) development of new forms (steeper rhombohedra and base pinacoid) at the edges and corners of the crystal seed, (ii) crystal habit tend to elongate along [0 0 1] due to slower growth of faces with high Mg2+ densities, (iii) reconstitution of crystal faces with low Mg2+ densities, and (iv) occurrence of calcite crystals with bended faces and edges due to very high Mg2+ (Mg/Ca ratios of 0.009–0.051) incorporation. Growth rates and possibly also organic compounds, however, may also affect the morphology of calcite crystals. Based on the data shown here, the relation of Mg2+ incorporation and the resulting changes in calcite crystal morphologies as well as the conditions of aragonite precipitation are now clearly better understood. Further work should aim at linking the calcite crystal morphology of watch glass precipitates with calcite crystal fabrics in speleothems in order to exploit the petrographic archive of speleothem deposits." @default.
- W2022956940 created "2016-06-24" @default.
- W2022956940 creator A5037041743 @default.
- W2022956940 creator A5039100639 @default.
- W2022956940 creator A5043040391 @default.
- W2022956940 creator A5044012919 @default.
- W2022956940 creator A5048387678 @default.
- W2022956940 creator A5050623638 @default.
- W2022956940 creator A5058336656 @default.
- W2022956940 creator A5063311508 @default.
- W2022956940 creator A5068531678 @default.
- W2022956940 creator A5070091178 @default.
- W2022956940 date "2014-11-01" @default.
- W2022956940 modified "2023-10-11" @default.
- W2022956940 title "Physicochemical characteristics of drip waters: Influence on mineralogy and crystal morphology of recent cave carbonate precipitates" @default.
- W2022956940 cites W1525013543 @default.
- W2022956940 cites W1607421372 @default.
- W2022956940 cites W1964892287 @default.
- W2022956940 cites W1972260028 @default.
- W2022956940 cites W1976556587 @default.
- W2022956940 cites W1981705209 @default.
- W2022956940 cites W1992624022 @default.
- W2022956940 cites W1995262597 @default.
- W2022956940 cites W1996167059 @default.
- W2022956940 cites W1998837657 @default.
- W2022956940 cites W2004255350 @default.
- W2022956940 cites W2013666588 @default.
- W2022956940 cites W2022802655 @default.
- W2022956940 cites W2030130506 @default.
- W2022956940 cites W2037985545 @default.
- W2022956940 cites W2039844111 @default.
- W2022956940 cites W2044135523 @default.
- W2022956940 cites W2052697204 @default.
- W2022956940 cites W2053529594 @default.
- W2022956940 cites W2056856617 @default.
- W2022956940 cites W2057368891 @default.
- W2022956940 cites W2058749173 @default.
- W2022956940 cites W2060302439 @default.
- W2022956940 cites W2060341446 @default.
- W2022956940 cites W2063463109 @default.
- W2022956940 cites W2067958945 @default.
- W2022956940 cites W2069369557 @default.
- W2022956940 cites W2079428926 @default.
- W2022956940 cites W2087390324 @default.
- W2022956940 cites W2093376535 @default.
- W2022956940 cites W2094320489 @default.
- W2022956940 cites W2095486941 @default.
- W2022956940 cites W2103606259 @default.
- W2022956940 cites W2107017299 @default.
- W2022956940 cites W2110482513 @default.
- W2022956940 cites W2111074760 @default.
- W2022956940 cites W2112925614 @default.
- W2022956940 cites W2116560190 @default.
- W2022956940 cites W2120516372 @default.
- W2022956940 cites W2121614714 @default.
- W2022956940 cites W2121631664 @default.
- W2022956940 cites W2123407463 @default.
- W2022956940 cites W2123502054 @default.
- W2022956940 cites W2136776507 @default.
- W2022956940 cites W2139404099 @default.
- W2022956940 cites W2146543851 @default.
- W2022956940 cites W2152761582 @default.
- W2022956940 cites W2154002562 @default.
- W2022956940 cites W2157468609 @default.
- W2022956940 cites W2161239874 @default.
- W2022956940 cites W2163373618 @default.
- W2022956940 cites W2163803515 @default.
- W2022956940 cites W2164755484 @default.
- W2022956940 cites W2414771224 @default.
- W2022956940 cites W2790785640 @default.
- W2022956940 doi "https://doi.org/10.1016/j.gca.2014.09.019" @default.
- W2022956940 hasPublicationYear "2014" @default.
- W2022956940 type Work @default.
- W2022956940 sameAs 2022956940 @default.
- W2022956940 citedByCount "46" @default.
- W2022956940 countsByYear W20229569402015 @default.
- W2022956940 countsByYear W20229569402016 @default.
- W2022956940 countsByYear W20229569402017 @default.
- W2022956940 countsByYear W20229569402018 @default.
- W2022956940 countsByYear W20229569402019 @default.
- W2022956940 countsByYear W20229569402020 @default.
- W2022956940 countsByYear W20229569402021 @default.
- W2022956940 countsByYear W20229569402022 @default.
- W2022956940 countsByYear W20229569402023 @default.
- W2022956940 crossrefType "journal-article" @default.
- W2022956940 hasAuthorship W2022956940A5037041743 @default.
- W2022956940 hasAuthorship W2022956940A5039100639 @default.
- W2022956940 hasAuthorship W2022956940A5043040391 @default.
- W2022956940 hasAuthorship W2022956940A5044012919 @default.
- W2022956940 hasAuthorship W2022956940A5048387678 @default.
- W2022956940 hasAuthorship W2022956940A5050623638 @default.
- W2022956940 hasAuthorship W2022956940A5058336656 @default.
- W2022956940 hasAuthorship W2022956940A5063311508 @default.
- W2022956940 hasAuthorship W2022956940A5068531678 @default.
- W2022956940 hasAuthorship W2022956940A5070091178 @default.
- W2022956940 hasConcept C127313418 @default.
- W2022956940 hasConcept C140345934 @default.
- W2022956940 hasConcept C151730666 @default.