Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022960368> ?p ?o ?g. }
- W2022960368 endingPage "332" @default.
- W2022960368 startingPage "317" @default.
- W2022960368 abstract "In this paper we report an extensive study using neutron scattering techniques of the spin fluctuations in the two-dimensional diluted near-Heisenberg antiferromagnet ${mathrm{Rb}}_{2}{mathrm{Mn}}_{c}{mathrm{Mg}}_{1ensuremath{-}c}{mathrm{F}}_{4}$. The concentrations studied are $c=0.54$, $c=0.57$, and $c=0.60$; the site-percolation concentration for the nearest-neighbor square lattice is ${c}_{p}=0.593$ so that these experiments span the percolation threshold. The point $c={c}_{p}$, $T=0$ represents the percolation multicritical point which terminates the line of second-order transition of the infinite network. We give a detailed description of the theory of the magnetic behavior around the percolation point; as the temperaturelike scaling field we suggest $ensuremath{mu}(T)={ensuremath{kappa}}_{1}(T)$ where ${ensuremath{kappa}}_{1}(T)$ is the inverse correlation length for the associated one-dimensional chain; for the static structure factor we propose the formula $mathcal{S}(|{c}_{p}ensuremath{-}c|,ensuremath{mu},stackrel{ensuremath{rightarrow}}{mathrm{Q}})ensuremath{propto}{ensuremath{kappa}}^{ensuremath{eta}}{({ensuremath{kappa}}^{2}+{Q}^{2})}^{ensuremath{-}1}$, where $ensuremath{kappa}=ensuremath{kappa}(|{c}_{p}ensuremath{-}c|,0)+ensuremath{kappa}(0,ensuremath{mu})$; that is, we assume that the geometrical and thermal inverse correlation lengths are simply additive. The $c=0.60$ sample is found to have a smeared second-order phase transition at about 8 K to a state with two-dimensional long-range order but only weak correlations in the third direction. The spin fluctuations in the precritical region are essentially identical to those in the concentrated systems, thus demonstrating that the phase transition in the $c=0.60$ infinite network is little affected by the proximity to the percolation threshold. For the $c=0.54$ and $c=0.57$ samples the correlation lengths and susceptibility increase with decreasing temperature down to about 3 K, below which temperature they saturate; for both samples the inverse correlation length is well described by the simple formula $ensuremath{kappa}=ensuremath{kappa}(ensuremath{Delta}C,0)+{[{ensuremath{kappa}}_{1}(T)]}^{0.9ifmmodepmelsetextpmfi{}0.05}$; the susceptibility follows the law $mathcal{S}(0)ensuremath{sim}{ensuremath{kappa}}^{1.5ifmmodepmelsetextpmfi{}0.15}$; both results are consistent with our scaling crossover formula and the assumption of the importance of the underlying one-dimensional links in the percolation clusters. The corresponding thermal critical exponents are ${ensuremath{nu}}_{T}=0.9ifmmodepmelsetextpmfi{}0.1$ and ${ensuremath{gamma}}_{T}=1.5ifmmodepmelsetextpmfi{}0.15$ compared with the percolation exponents ${ensuremath{nu}}_{p}=1.36$ and ${ensuremath{gamma}}_{p}=2.43$, so that the experimental crossover exponent is $ensuremath{varphi}=1.56ifmmodepmelsetextpmfi{}0.15$. There is currently no first-principle theory which properly accounts for this value of the crossover exponent, although the experiment includes within the errors the value $ensuremath{varphi}=1.7$, appropriate to a self-avoiding walk ansatz for the principal paths along which the correlations spread." @default.
- W2022960368 created "2016-06-24" @default.
- W2022960368 creator A5011129906 @default.
- W2022960368 creator A5021698649 @default.
- W2022960368 creator A5045336113 @default.
- W2022960368 creator A5054016127 @default.
- W2022960368 creator A5059413456 @default.
- W2022960368 date "1980-01-01" @default.
- W2022960368 modified "2023-10-09" @default.
- W2022960368 title "Spin fluctuations in random magnetic-nonmagnetic two-dimensional antiferromagnets. II. Heisenberg percolation" @default.
- W2022960368 cites W1519248005 @default.
- W2022960368 cites W1657301964 @default.
- W2022960368 cites W1967487407 @default.
- W2022960368 cites W1973026857 @default.
- W2022960368 cites W1975287136 @default.
- W2022960368 cites W1976554238 @default.
- W2022960368 cites W1978918009 @default.
- W2022960368 cites W1989114527 @default.
- W2022960368 cites W1989782587 @default.
- W2022960368 cites W1992193296 @default.
- W2022960368 cites W1994657289 @default.
- W2022960368 cites W2005430064 @default.
- W2022960368 cites W2006025940 @default.
- W2022960368 cites W2016657610 @default.
- W2022960368 cites W2018056168 @default.
- W2022960368 cites W2024363171 @default.
- W2022960368 cites W2024530684 @default.
- W2022960368 cites W2025936280 @default.
- W2022960368 cites W2030876571 @default.
- W2022960368 cites W2031809122 @default.
- W2022960368 cites W2032411420 @default.
- W2022960368 cites W2033232471 @default.
- W2022960368 cites W2033812021 @default.
- W2022960368 cites W2039077327 @default.
- W2022960368 cites W2040331307 @default.
- W2022960368 cites W2040909602 @default.
- W2022960368 cites W2042409804 @default.
- W2022960368 cites W2044124278 @default.
- W2022960368 cites W2052942733 @default.
- W2022960368 cites W2064216685 @default.
- W2022960368 cites W2067526959 @default.
- W2022960368 cites W2069791687 @default.
- W2022960368 cites W2077015646 @default.
- W2022960368 cites W2077631433 @default.
- W2022960368 cites W2079218525 @default.
- W2022960368 cites W2082494798 @default.
- W2022960368 cites W2083261015 @default.
- W2022960368 cites W2089554009 @default.
- W2022960368 cites W2106554732 @default.
- W2022960368 cites W2126193718 @default.
- W2022960368 cites W2133448573 @default.
- W2022960368 cites W2318403283 @default.
- W2022960368 cites W2331374400 @default.
- W2022960368 cites W9614999 @default.
- W2022960368 doi "https://doi.org/10.1103/physrevb.21.317" @default.
- W2022960368 hasPublicationYear "1980" @default.
- W2022960368 type Work @default.
- W2022960368 sameAs 2022960368 @default.
- W2022960368 citedByCount "103" @default.
- W2022960368 countsByYear W20229603682012 @default.
- W2022960368 countsByYear W20229603682013 @default.
- W2022960368 countsByYear W20229603682015 @default.
- W2022960368 countsByYear W20229603682016 @default.
- W2022960368 countsByYear W20229603682017 @default.
- W2022960368 countsByYear W20229603682020 @default.
- W2022960368 countsByYear W20229603682021 @default.
- W2022960368 countsByYear W20229603682022 @default.
- W2022960368 countsByYear W20229603682023 @default.
- W2022960368 crossrefType "journal-article" @default.
- W2022960368 hasAuthorship W2022960368A5011129906 @default.
- W2022960368 hasAuthorship W2022960368A5021698649 @default.
- W2022960368 hasAuthorship W2022960368A5045336113 @default.
- W2022960368 hasAuthorship W2022960368A5054016127 @default.
- W2022960368 hasAuthorship W2022960368A5059413456 @default.
- W2022960368 hasConcept C10138342 @default.
- W2022960368 hasConcept C121332964 @default.
- W2022960368 hasConcept C155355069 @default.
- W2022960368 hasConcept C162324750 @default.
- W2022960368 hasConcept C182306322 @default.
- W2022960368 hasConcept C207467116 @default.
- W2022960368 hasConcept C2524010 @default.
- W2022960368 hasConcept C26873012 @default.
- W2022960368 hasConcept C2729557 @default.
- W2022960368 hasConcept C2777620828 @default.
- W2022960368 hasConcept C33923547 @default.
- W2022960368 hasConcept C42704618 @default.
- W2022960368 hasConcept C51329190 @default.
- W2022960368 hasConcept C62520636 @default.
- W2022960368 hasConcept C69990965 @default.
- W2022960368 hasConcept C97355855 @default.
- W2022960368 hasConceptScore W2022960368C10138342 @default.
- W2022960368 hasConceptScore W2022960368C121332964 @default.
- W2022960368 hasConceptScore W2022960368C155355069 @default.
- W2022960368 hasConceptScore W2022960368C162324750 @default.
- W2022960368 hasConceptScore W2022960368C182306322 @default.
- W2022960368 hasConceptScore W2022960368C207467116 @default.
- W2022960368 hasConceptScore W2022960368C2524010 @default.
- W2022960368 hasConceptScore W2022960368C26873012 @default.