Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022961451> ?p ?o ?g. }
- W2022961451 endingPage "2257" @default.
- W2022961451 startingPage "2251" @default.
- W2022961451 abstract "Density functional theory (DFT) combined with the finite field (FF) method has been carried out to investigate the switching nonlinear optical (NLO) action of the TEMPO-bound dithiolate ligands and metal (Pt, Pd) complexes. The TEMPO unit is a redox-active radical and can stably exist in different redox states (TEMPOH, TEMPO+, TEMPO, TEMPO−). The DFT–FF calculations show that a substantial enhancement in second-order polarizability has been obtained in TEMPO+-bound dithiolate ligand, with a value of 461 × 10−30 esu. It is because that the TEMPO moiety as donor strength has been lowered by one-electron-reduced, and then the TEMPO moiety becomes the acceptor character in one-electron-oxidized species 1L+. On the whole, the βtot values of metal complexes within their four different states exhibit excellent NLO switching characters. Thus, this kind of metal complexes has a possibility to be excellent switching second-order NLO materials. Among four states of the metal complexes, the radical PtL and hydroxylamine PtLH species are nonlinearity “on”, while the one-electron-oxidized 3PtL+ and one-electron-reduced 3PtL− species are nonlinearity “off”. It can be seen from the following the real process. Specifically, the electron-acceptor ability of the diimine ligand decreases within its reduction process. However, the electronic character of dithiolate ligand will be changed from electron-donor to electron-acceptor when it is oxidated." @default.
- W2022961451 created "2016-06-24" @default.
- W2022961451 creator A5003297812 @default.
- W2022961451 creator A5014916492 @default.
- W2022961451 creator A5016808540 @default.
- W2022961451 creator A5056103707 @default.
- W2022961451 creator A5060748151 @default.
- W2022961451 creator A5063505795 @default.
- W2022961451 date "2010-09-01" @default.
- W2022961451 modified "2023-09-25" @default.
- W2022961451 title "Redox-switchable second-order nonlinear optical responses of TEMPO-dithiolate ligand and (tempodt)M complexes (M = Pt, Pd)" @default.
- W2022961451 cites W1966039296 @default.
- W2022961451 cites W1970530516 @default.
- W2022961451 cites W1971949769 @default.
- W2022961451 cites W1972703538 @default.
- W2022961451 cites W1972868344 @default.
- W2022961451 cites W1974319026 @default.
- W2022961451 cites W1975879685 @default.
- W2022961451 cites W1976951756 @default.
- W2022961451 cites W1977166954 @default.
- W2022961451 cites W1977283763 @default.
- W2022961451 cites W1978131758 @default.
- W2022961451 cites W1979819296 @default.
- W2022961451 cites W1987155066 @default.
- W2022961451 cites W1989414943 @default.
- W2022961451 cites W1993655160 @default.
- W2022961451 cites W1995195523 @default.
- W2022961451 cites W1996224869 @default.
- W2022961451 cites W1996641549 @default.
- W2022961451 cites W2001351436 @default.
- W2022961451 cites W2002841812 @default.
- W2022961451 cites W2004184665 @default.
- W2022961451 cites W2004348234 @default.
- W2022961451 cites W2005178665 @default.
- W2022961451 cites W2011252023 @default.
- W2022961451 cites W2017798663 @default.
- W2022961451 cites W2018964250 @default.
- W2022961451 cites W2018984438 @default.
- W2022961451 cites W2023248146 @default.
- W2022961451 cites W2024355976 @default.
- W2022961451 cites W2026317102 @default.
- W2022961451 cites W2030730579 @default.
- W2022961451 cites W2032061727 @default.
- W2022961451 cites W2035887397 @default.
- W2022961451 cites W2037162596 @default.
- W2022961451 cites W2040604989 @default.
- W2022961451 cites W2044093496 @default.
- W2022961451 cites W2044100629 @default.
- W2022961451 cites W2046202047 @default.
- W2022961451 cites W2050059419 @default.
- W2022961451 cites W2059429196 @default.
- W2022961451 cites W2060128498 @default.
- W2022961451 cites W2060306489 @default.
- W2022961451 cites W2061555015 @default.
- W2022961451 cites W2062509911 @default.
- W2022961451 cites W2064048215 @default.
- W2022961451 cites W2064269661 @default.
- W2022961451 cites W2065650357 @default.
- W2022961451 cites W2067908861 @default.
- W2022961451 cites W2067999858 @default.
- W2022961451 cites W2069633983 @default.
- W2022961451 cites W2072372450 @default.
- W2022961451 cites W2072405411 @default.
- W2022961451 cites W2076247922 @default.
- W2022961451 cites W2080562091 @default.
- W2022961451 cites W2081134127 @default.
- W2022961451 cites W2085114105 @default.
- W2022961451 cites W2086975486 @default.
- W2022961451 cites W2087642816 @default.
- W2022961451 cites W2088264964 @default.
- W2022961451 cites W2090253142 @default.
- W2022961451 cites W2094321246 @default.
- W2022961451 cites W2094376864 @default.
- W2022961451 cites W2094592316 @default.
- W2022961451 cites W2119884286 @default.
- W2022961451 cites W2126889030 @default.
- W2022961451 cites W2136110076 @default.
- W2022961451 cites W2160737217 @default.
- W2022961451 cites W2187439399 @default.
- W2022961451 cites W2951790603 @default.
- W2022961451 doi "https://doi.org/10.1016/j.jorganchem.2010.06.014" @default.
- W2022961451 hasPublicationYear "2010" @default.
- W2022961451 type Work @default.
- W2022961451 sameAs 2022961451 @default.
- W2022961451 citedByCount "21" @default.
- W2022961451 countsByYear W20229614512012 @default.
- W2022961451 countsByYear W20229614512013 @default.
- W2022961451 countsByYear W20229614512014 @default.
- W2022961451 countsByYear W20229614512016 @default.
- W2022961451 countsByYear W20229614512017 @default.
- W2022961451 countsByYear W20229614512018 @default.
- W2022961451 countsByYear W20229614512019 @default.
- W2022961451 countsByYear W20229614512022 @default.
- W2022961451 countsByYear W20229614512023 @default.
- W2022961451 crossrefType "journal-article" @default.
- W2022961451 hasAuthorship W2022961451A5003297812 @default.
- W2022961451 hasAuthorship W2022961451A5014916492 @default.
- W2022961451 hasAuthorship W2022961451A5016808540 @default.