Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022962401> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W2022962401 endingPage "163" @default.
- W2022962401 startingPage "151" @default.
- W2022962401 abstract "A Viterbi path of length n of a discrete Markov chain is a sequence of n + 1 states that has the greatest probability of occurring in the Markov chain. We divide the space of all Markov chains into Viterbi regions in which two Markov chains are in the same region if they have the same set of Viterbi paths. The Viterbi paths of regions of positive measure are called Viterbi sequences. Our main results are (1) each Viterbi sequence can be divided into a prefix, periodic interior, and suffix, and (2) as n increases to infinity (and the number of states remains fixed), the number of Viterbi regions remains bounded. The Viterbi regions correspond to the vertices of a Newton polytope of a polynomial whose terms are the probabilities of sequences of length n . We characterize Viterbi sequences and polytopes for two- and three-state Markov chains." @default.
- W2022962401 created "2016-06-24" @default.
- W2022962401 creator A5080848052 @default.
- W2022962401 date "2006-02-01" @default.
- W2022962401 modified "2023-09-27" @default.
- W2022962401 title "Viterbi sequences and polytopes" @default.
- W2022962401 cites W1610269435 @default.
- W2022962401 cites W1974520228 @default.
- W2022962401 cites W1990561950 @default.
- W2022962401 cites W1991133427 @default.
- W2022962401 cites W1996897910 @default.
- W2022962401 cites W2081659888 @default.
- W2022962401 cites W2142384583 @default.
- W2022962401 cites W3104593421 @default.
- W2022962401 doi "https://doi.org/10.1016/j.jsc.2005.04.007" @default.
- W2022962401 hasPublicationYear "2006" @default.
- W2022962401 type Work @default.
- W2022962401 sameAs 2022962401 @default.
- W2022962401 citedByCount "5" @default.
- W2022962401 countsByYear W20229624012013 @default.
- W2022962401 countsByYear W20229624012017 @default.
- W2022962401 countsByYear W20229624012018 @default.
- W2022962401 countsByYear W20229624012019 @default.
- W2022962401 crossrefType "journal-article" @default.
- W2022962401 hasAuthorship W2022962401A5080848052 @default.
- W2022962401 hasBestOaLocation W20229624011 @default.
- W2022962401 hasConcept C114614502 @default.
- W2022962401 hasConcept C118615104 @default.
- W2022962401 hasConcept C145691206 @default.
- W2022962401 hasConcept C33923547 @default.
- W2022962401 hasConceptScore W2022962401C114614502 @default.
- W2022962401 hasConceptScore W2022962401C118615104 @default.
- W2022962401 hasConceptScore W2022962401C145691206 @default.
- W2022962401 hasConceptScore W2022962401C33923547 @default.
- W2022962401 hasIssue "2" @default.
- W2022962401 hasLocation W20229624011 @default.
- W2022962401 hasLocation W20229624012 @default.
- W2022962401 hasOpenAccess W2022962401 @default.
- W2022962401 hasPrimaryLocation W20229624011 @default.
- W2022962401 hasRelatedWork W1741741233 @default.
- W2022962401 hasRelatedWork W1867676345 @default.
- W2022962401 hasRelatedWork W1966474945 @default.
- W2022962401 hasRelatedWork W1989428327 @default.
- W2022962401 hasRelatedWork W2051302547 @default.
- W2022962401 hasRelatedWork W2089666349 @default.
- W2022962401 hasRelatedWork W2141148003 @default.
- W2022962401 hasRelatedWork W3093668615 @default.
- W2022962401 hasRelatedWork W4212966376 @default.
- W2022962401 hasRelatedWork W4290960068 @default.
- W2022962401 hasVolume "41" @default.
- W2022962401 isParatext "false" @default.
- W2022962401 isRetracted "false" @default.
- W2022962401 magId "2022962401" @default.
- W2022962401 workType "article" @default.