Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022963734> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2022963734 endingPage "818" @default.
- W2022963734 startingPage "811" @default.
- W2022963734 abstract "No AccessEngineering NoteGyro-Free Rigid-Body Attitude Stabilization Using only Vector MeasurementsDivya Thakur and Maruthi R. AkellaDivya ThakurDepartment of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, Texas 78712*Ph.D. Candidate, Department of Aerospace Engineering and Engineering Mechanics, 1 University Station; . Student Member AIAA.Search for more papers by this author and Maruthi R. AkellaDepartment of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, Texas 78712†Associate Professor, Department of Aerospace Engineering and Engineering Mechanics, 1 University Station, Myron L. Begeman Fellow in Engineering; . Associate Fellow AIAA.Search for more papers by this authorPublished Online:19 Dec 2014https://doi.org/10.2514/1.G000623SectionsView Full TextPDFPDF Plus ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Chaturvedi N. A., Sanyal A. K. and McClamroch N. H., “Rigid Body Attitude Control: Using Rotation Matrices for Continuous, Singularity-Free Control Laws,” IEEE Control Systems, Vol. 31, No. 3, 2011, pp. 30–51. doi:https://doi.org/10.1109/MCS.2011.940459 ISMAD7 0272-1708 CrossrefGoogle Scholar[2] Pounds P., Hamel T. and Mahony R., “Attitude Control of Rigid Body Dynamics from Biased IMU Measurements,” Proceedings of the 46th IEEE Conference on Decision and Control, IEEE Publ., Piscataway, NJ, 2007, pp. 4620–4625. Google Scholar[3] Sanyal A., Fosbury A., Chaturvedi N. and Bernstein D., “Inertia-Free Spacecraft Attitude Tracking with Disturbance Rejection and Almost Global Stabilization,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 4, 2009, pp. 1167–1178. doi:https://doi.org/10.2514/1.41565 JGCDDT 0162-3192 LinkGoogle Scholar[4] Forbes J. R., “Passivity-Based Attitude Control on the Special Orthogonal Group of Rigid-Body Rotations,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 6, 2013, pp. 1596–1605. doi:https://doi.org/10.2514/1.59270 JGCDDT 0162-3192 LinkGoogle Scholar[5] Wen J. T. and Kreutz-Delgado K., “Attitude Control Problem,” IEEE Transactions on Automatic Control, Vol. 36, No. 10, 1991, pp. 1148–1162. doi:https://doi.org/10.1109/9.90228 IETAA9 0018-9286 CrossrefGoogle Scholar[6] Wie B. and Barba P. M., “Quaternion Feedback for Spacecraft Large Angle Maneuvers,” Journal of Guidance, Control, and Dynamics, Vol. 8, No. 3, 1985, pp. 360–365. doi:https://doi.org/10.2514/3.19988 JGCDDT 0162-3192 LinkGoogle Scholar[7] Akella M. R., “Rigid Body Attitude Tracking Without Angular Velocity Feedback,” Systems & Control Letters, Vol. 42, No. 4, 2001, pp. 321–326. doi:https://doi.org/10.1016/S0167-6911(00)00102-X CrossrefGoogle Scholar[8] Lizarralde F. and Wen J. T., “Attitude Control Without Angular Velocity Measurement: A Passivity Approach,” IEEE Transactions on Automatic Control, Vol. 41, No. 3, 1996, pp. 468–472. doi:https://doi.org/10.1109/9.486654 IETAA9 0018-9286 CrossrefGoogle Scholar[9] Tsiotras P., “Further Passivity Results for the Attitude Control Problem,” IEEE Transactions on Automatic Control, Vol. 43, No. 11, 1998, pp. 1597–1600. doi:https://doi.org/10.1109/9.728877 IETAA9 0018-9286 CrossrefGoogle Scholar[10] Akella M. R., Seo D. and Zanetti R., “Attracting Manifolds for Attitude Estimation in Flatland and Otherlands,” Journal of Astronautical Sciences, Vol. 54, Nos. 3–4, 2006, pp. 635–655.doi:https://doi.org/10.1007/BF03256510 CrossrefGoogle Scholar[11] Markley F. L., “Attitude Determination Using Vector Observations: A Fast Optimal Matrix Algorithm,” Journal of Astronautical Sciences, Vol. 41, No. 2, 1993, pp. 261–280. Google Scholar[12] Shuster M. D. and Oh S. D., “Three-Axis Attitude Determination from Vector Observations,” Journal of Guidance, Control, and Dynamics, Vol. 4, No. 1, 1981, pp. 70–77. doi:https://doi.org/10.2514/3.19717 JGCDDT 0162-3192 LinkGoogle Scholar[13] Mercker T. and Akella M., “Rigid-Body Attitude Tracking with Vector Measurements and Unknown Gyro Bias,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 5, 2011, pp. 1474–1484. doi:https://doi.org/10.2514/1.53111 JGCDDT 0162-3192 LinkGoogle Scholar[14] Tayebi A., Roberts A. and Benallegue A., “Inertial Vector Measurements Based Velocity-Free Attitude Stabilization,” IEEE Transactions on Automatic Control, Vol. 58, No. 11, 2013, pp. 2893–2898. doi:https://doi.org/10.1109/TAC.2013.2256689 IETAA9 0018-9286 CrossrefGoogle Scholar[15] Bhat S. P. and Bernstein D. S., “Topological Obstruction to Continuous Global Stabilization of Rotational Motion and the Unwinding Phenomenon,” Systems & Control Letters, Vol. 39, No. 1, 2000, pp. 63–70. doi:https://doi.org/10.1016/S0167-6911(99)00090-0 CrossrefGoogle Scholar[16] Mahony R., Hamel T. and Pflimlin J.-M., “Nonlinear Complementary Filters on the Special Orthogonal Group,” IEEE Transactions on Automatic Control, Vol. 53, No. 5, 2008, pp. 1203–1218. doi:https://doi.org/10.1109/TAC.2008.923738 IETAA9 0018-9286 CrossrefGoogle Scholar[17] Hamel T. and Mahony R., “Attitude Estimation on SO(3) Based on Direct Inertial Measurements,” Proceedings of the 2006 IEEE International Conference on Robotics and Automation, IEEE Publ., Piscataway, NJ, 2006, pp. 2170–2175. Google Scholar[18] Slotine J. J. E. and Li W., Applied Nonlinear Control, 3rd ed., Prentice–Hall, Upper Saddle River, NJ, 2002, pp. 311–389, Chap. 8. Google Scholar[19] Sastry S. and Bodson M., Adaptive Control: Stability, Convergence, and Robustness, Prentice-Hall, Upper Saddle River, NJ, 1989, pp. 17–39, Chap. 1. Google Scholar[20] Shuster M. D., “Survey of Attitude Representation,” Journal of Astronautical Sciences, Vol. 41, No. 4, 1993, pp. 439–517. Google Scholar Previous article" @default.
- W2022963734 created "2016-06-24" @default.
- W2022963734 creator A5025298625 @default.
- W2022963734 creator A5080453883 @default.
- W2022963734 date "2015-04-01" @default.
- W2022963734 modified "2023-10-17" @default.
- W2022963734 title "Gyro-Free Rigid-Body Attitude Stabilization Using only Vector Measurements" @default.
- W2022963734 cites W1979009520 @default.
- W2022963734 cites W1981004592 @default.
- W2022963734 cites W2006863675 @default.
- W2022963734 cites W2007751090 @default.
- W2022963734 cites W2018431869 @default.
- W2022963734 cites W2024084290 @default.
- W2022963734 cites W2046287268 @default.
- W2022963734 cites W2076578526 @default.
- W2022963734 cites W2101413622 @default.
- W2022963734 cites W2125691646 @default.
- W2022963734 cites W2129092695 @default.
- W2022963734 cites W2131276718 @default.
- W2022963734 cites W2137427741 @default.
- W2022963734 cites W4240833877 @default.
- W2022963734 doi "https://doi.org/10.2514/1.g000623" @default.
- W2022963734 hasPublicationYear "2015" @default.
- W2022963734 type Work @default.
- W2022963734 sameAs 2022963734 @default.
- W2022963734 citedByCount "18" @default.
- W2022963734 countsByYear W20229637342015 @default.
- W2022963734 countsByYear W20229637342016 @default.
- W2022963734 countsByYear W20229637342017 @default.
- W2022963734 countsByYear W20229637342018 @default.
- W2022963734 countsByYear W20229637342019 @default.
- W2022963734 countsByYear W20229637342020 @default.
- W2022963734 countsByYear W20229637342021 @default.
- W2022963734 countsByYear W20229637342022 @default.
- W2022963734 countsByYear W20229637342023 @default.
- W2022963734 crossrefType "journal-article" @default.
- W2022963734 hasAuthorship W2022963734A5025298625 @default.
- W2022963734 hasAuthorship W2022963734A5080453883 @default.
- W2022963734 hasConcept C121332964 @default.
- W2022963734 hasConcept C127413603 @default.
- W2022963734 hasConcept C146978453 @default.
- W2022963734 hasConcept C167740415 @default.
- W2022963734 hasConcept C178802073 @default.
- W2022963734 hasConcept C19117948 @default.
- W2022963734 hasConcept C29829512 @default.
- W2022963734 hasConcept C2992358367 @default.
- W2022963734 hasConcept C32909587 @default.
- W2022963734 hasConcept C62520636 @default.
- W2022963734 hasConcept C78519656 @default.
- W2022963734 hasConceptScore W2022963734C121332964 @default.
- W2022963734 hasConceptScore W2022963734C127413603 @default.
- W2022963734 hasConceptScore W2022963734C146978453 @default.
- W2022963734 hasConceptScore W2022963734C167740415 @default.
- W2022963734 hasConceptScore W2022963734C178802073 @default.
- W2022963734 hasConceptScore W2022963734C19117948 @default.
- W2022963734 hasConceptScore W2022963734C29829512 @default.
- W2022963734 hasConceptScore W2022963734C2992358367 @default.
- W2022963734 hasConceptScore W2022963734C32909587 @default.
- W2022963734 hasConceptScore W2022963734C62520636 @default.
- W2022963734 hasConceptScore W2022963734C78519656 @default.
- W2022963734 hasIssue "4" @default.
- W2022963734 hasLocation W20229637341 @default.
- W2022963734 hasOpenAccess W2022963734 @default.
- W2022963734 hasPrimaryLocation W20229637341 @default.
- W2022963734 hasRelatedWork W1627778053 @default.
- W2022963734 hasRelatedWork W1966945977 @default.
- W2022963734 hasRelatedWork W2064999371 @default.
- W2022963734 hasRelatedWork W2118489026 @default.
- W2022963734 hasRelatedWork W2237025049 @default.
- W2022963734 hasRelatedWork W2734340365 @default.
- W2022963734 hasRelatedWork W2809744190 @default.
- W2022963734 hasRelatedWork W2898860390 @default.
- W2022963734 hasRelatedWork W2950573157 @default.
- W2022963734 hasRelatedWork W4225795411 @default.
- W2022963734 hasVolume "38" @default.
- W2022963734 isParatext "false" @default.
- W2022963734 isRetracted "false" @default.
- W2022963734 magId "2022963734" @default.
- W2022963734 workType "article" @default.