Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022969722> ?p ?o ?g. }
- W2022969722 endingPage "1043" @default.
- W2022969722 startingPage "1032" @default.
- W2022969722 abstract "The properties of steady, two-dimensional flows with spatially uniform strain rates ε and rotation rates γ where ε2⩾γ2, and hence open, hyperbolic, streamlines are investigated. By comparison with a high resolution numerical simulation of a free shear layer, such a quadratic flow is an idealized local model of the “braid” region which develops between neighboring saturated Kelvin–Helmholtz billows in an unstable free shear layer. A class of exact three-dimensional nonlinear solutions for spatially periodic perturbations is derived. These solutions satisfy the condition that the amplitude of the time-varying wave number of the perturbation remains bounded in time, and hence that pressure plays an asymptotically small role in their dynamics. In the limit of long time, the energy of such perturbations in an inviscid flow grows exponentially, with growth rate 2ε2−γ2, and the perturbation pressure plays no significant role in the dynamic evolution. This asymptotic growth rate is not the maximal growth rate accessible to general perturbations, which may grow transiently at rate 2ε, independently of γ. However, almost all initial conditions lead to, at most, transient growth and hence finite asymptotic perturbation energy in an inviscid flow as time increases, due to the finite amplitude effects of pressure perturbations. Perturbations which do undergo significant transient growth take the form of streamwise-aligned perturbation vorticity which varies periodically in the spanwise direction. By comparison of this local model with a numerically simulated mixing layer, appropriately initialized “hyperbolic instabilities” appear to have significantly larger transient growth rates than an “elliptical instability” of the primary billow core. These hyperbolic instabilities appear to be a simple model for the spanwise periodic perturbations which are known to lead to the nucleation of secondary rib vortices in the braid region between adjacent billow cores." @default.
- W2022969722 created "2016-06-24" @default.
- W2022969722 creator A5020365567 @default.
- W2022969722 creator A5090157403 @default.
- W2022969722 date "2000-05-01" @default.
- W2022969722 modified "2023-10-03" @default.
- W2022969722 title "The nonlinear development of three-dimensional disturbances at hyperbolic stagnation points: A model of the braid region in mixing layers" @default.
- W2022969722 cites W1965109932 @default.
- W2022969722 cites W1966463189 @default.
- W2022969722 cites W1971569867 @default.
- W2022969722 cites W1973125212 @default.
- W2022969722 cites W1989269214 @default.
- W2022969722 cites W1990774805 @default.
- W2022969722 cites W1991642474 @default.
- W2022969722 cites W2004732518 @default.
- W2022969722 cites W2006799790 @default.
- W2022969722 cites W2014644502 @default.
- W2022969722 cites W2020811841 @default.
- W2022969722 cites W2023750399 @default.
- W2022969722 cites W2024066263 @default.
- W2022969722 cites W2026831089 @default.
- W2022969722 cites W2033870566 @default.
- W2022969722 cites W2034039529 @default.
- W2022969722 cites W2034984183 @default.
- W2022969722 cites W2038286776 @default.
- W2022969722 cites W2042761766 @default.
- W2022969722 cites W2044178884 @default.
- W2022969722 cites W2044263873 @default.
- W2022969722 cites W2045087740 @default.
- W2022969722 cites W2052015417 @default.
- W2022969722 cites W2052663370 @default.
- W2022969722 cites W2060309976 @default.
- W2022969722 cites W2066296696 @default.
- W2022969722 cites W2069852292 @default.
- W2022969722 cites W2074979201 @default.
- W2022969722 cites W2082815526 @default.
- W2022969722 cites W2091824089 @default.
- W2022969722 cites W2094940333 @default.
- W2022969722 cites W2102883878 @default.
- W2022969722 cites W2111220583 @default.
- W2022969722 cites W2125431827 @default.
- W2022969722 cites W2131621473 @default.
- W2022969722 cites W2135353663 @default.
- W2022969722 cites W2136146209 @default.
- W2022969722 cites W2139470553 @default.
- W2022969722 cites W2140168800 @default.
- W2022969722 cites W2160428180 @default.
- W2022969722 cites W2167101522 @default.
- W2022969722 cites W2174133712 @default.
- W2022969722 cites W4248613488 @default.
- W2022969722 doi "https://doi.org/10.1063/1.870358" @default.
- W2022969722 hasPublicationYear "2000" @default.
- W2022969722 type Work @default.
- W2022969722 sameAs 2022969722 @default.
- W2022969722 citedByCount "30" @default.
- W2022969722 countsByYear W20229697222013 @default.
- W2022969722 countsByYear W20229697222015 @default.
- W2022969722 countsByYear W20229697222016 @default.
- W2022969722 countsByYear W20229697222018 @default.
- W2022969722 countsByYear W20229697222020 @default.
- W2022969722 countsByYear W20229697222023 @default.
- W2022969722 crossrefType "journal-article" @default.
- W2022969722 hasAuthorship W2022969722A5020365567 @default.
- W2022969722 hasAuthorship W2022969722A5090157403 @default.
- W2022969722 hasConcept C120665830 @default.
- W2022969722 hasConcept C121332964 @default.
- W2022969722 hasConcept C134306372 @default.
- W2022969722 hasConcept C135768490 @default.
- W2022969722 hasConcept C140820882 @default.
- W2022969722 hasConcept C177918212 @default.
- W2022969722 hasConcept C180205008 @default.
- W2022969722 hasConcept C200114574 @default.
- W2022969722 hasConcept C207821765 @default.
- W2022969722 hasConcept C2524010 @default.
- W2022969722 hasConcept C2778312390 @default.
- W2022969722 hasConcept C33923547 @default.
- W2022969722 hasConcept C57879066 @default.
- W2022969722 hasConcept C60439489 @default.
- W2022969722 hasConcept C62520636 @default.
- W2022969722 hasConcept C74650414 @default.
- W2022969722 hasConcept C86252789 @default.
- W2022969722 hasConcept C98156149 @default.
- W2022969722 hasConceptScore W2022969722C120665830 @default.
- W2022969722 hasConceptScore W2022969722C121332964 @default.
- W2022969722 hasConceptScore W2022969722C134306372 @default.
- W2022969722 hasConceptScore W2022969722C135768490 @default.
- W2022969722 hasConceptScore W2022969722C140820882 @default.
- W2022969722 hasConceptScore W2022969722C177918212 @default.
- W2022969722 hasConceptScore W2022969722C180205008 @default.
- W2022969722 hasConceptScore W2022969722C200114574 @default.
- W2022969722 hasConceptScore W2022969722C207821765 @default.
- W2022969722 hasConceptScore W2022969722C2524010 @default.
- W2022969722 hasConceptScore W2022969722C2778312390 @default.
- W2022969722 hasConceptScore W2022969722C33923547 @default.
- W2022969722 hasConceptScore W2022969722C57879066 @default.
- W2022969722 hasConceptScore W2022969722C60439489 @default.
- W2022969722 hasConceptScore W2022969722C62520636 @default.
- W2022969722 hasConceptScore W2022969722C74650414 @default.