Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022971702> ?p ?o ?g. }
- W2022971702 endingPage "195" @default.
- W2022971702 startingPage "183" @default.
- W2022971702 abstract "A framework of using t mixture models with fourteen eigen-decomposed covariance structures for the unsupervised learning of heterogeneous multivariate data with possible missing values is designed and implemented. Computationally flexible EM-type algorithms are developed for parameter estimation of these models under a missing at random (MAR) mechanism. For ease of computation and theoretical developments, two auxiliary indicator matrices are incorporated into the estimating procedure for exactly extracting the location of observed and missing components of each observation. Computational aspects related to the specification of starting values, convergence assessment and model choice are also discussed. The practical usefulness of the proposed methodology is illustrated with real data examples and a simulation study with varying proportions of missing values." @default.
- W2022971702 created "2016-06-24" @default.
- W2022971702 creator A5001115779 @default.
- W2022971702 date "2014-03-01" @default.
- W2022971702 modified "2023-09-27" @default.
- W2022971702 title "Learning from incomplete data via parameterized <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML altimg=si29.gif display=inline overflow=scroll><mml:mi>t</mml:mi></mml:math> mixture models through eigenvalue decomposition" @default.
- W2022971702 cites W1573175260 @default.
- W2022971702 cites W194034371 @default.
- W2022971702 cites W1967477973 @default.
- W2022971702 cites W1967639437 @default.
- W2022971702 cites W1975120776 @default.
- W2022971702 cites W1977983964 @default.
- W2022971702 cites W1981367467 @default.
- W2022971702 cites W1982384746 @default.
- W2022971702 cites W1992724796 @default.
- W2022971702 cites W2005363197 @default.
- W2022971702 cites W2011832962 @default.
- W2022971702 cites W2014306350 @default.
- W2022971702 cites W2024476015 @default.
- W2022971702 cites W2039615557 @default.
- W2022971702 cites W2046011840 @default.
- W2022971702 cites W2047555270 @default.
- W2022971702 cites W2059279601 @default.
- W2022971702 cites W2060399680 @default.
- W2022971702 cites W2060488211 @default.
- W2022971702 cites W2063022239 @default.
- W2022971702 cites W2066077440 @default.
- W2022971702 cites W2075092851 @default.
- W2022971702 cites W2076922381 @default.
- W2022971702 cites W2081168105 @default.
- W2022971702 cites W2082503527 @default.
- W2022971702 cites W2085808540 @default.
- W2022971702 cites W2090692107 @default.
- W2022971702 cites W2091276705 @default.
- W2022971702 cites W2091797506 @default.
- W2022971702 cites W2100358124 @default.
- W2022971702 cites W2109820980 @default.
- W2022971702 cites W2118254160 @default.
- W2022971702 cites W2137971377 @default.
- W2022971702 cites W2138309709 @default.
- W2022971702 cites W2150230417 @default.
- W2022971702 cites W2152977846 @default.
- W2022971702 cites W2154055962 @default.
- W2022971702 cites W2168175751 @default.
- W2022971702 cites W2490112691 @default.
- W2022971702 cites W2800129804 @default.
- W2022971702 cites W4248463836 @default.
- W2022971702 doi "https://doi.org/10.1016/j.csda.2013.02.020" @default.
- W2022971702 hasPublicationYear "2014" @default.
- W2022971702 type Work @default.
- W2022971702 sameAs 2022971702 @default.
- W2022971702 citedByCount "40" @default.
- W2022971702 countsByYear W20229717022014 @default.
- W2022971702 countsByYear W20229717022015 @default.
- W2022971702 countsByYear W20229717022016 @default.
- W2022971702 countsByYear W20229717022017 @default.
- W2022971702 countsByYear W20229717022018 @default.
- W2022971702 countsByYear W20229717022019 @default.
- W2022971702 countsByYear W20229717022020 @default.
- W2022971702 countsByYear W20229717022021 @default.
- W2022971702 countsByYear W20229717022022 @default.
- W2022971702 crossrefType "journal-article" @default.
- W2022971702 hasAuthorship W2022971702A5001115779 @default.
- W2022971702 hasConcept C105795698 @default.
- W2022971702 hasConcept C11413529 @default.
- W2022971702 hasConcept C119857082 @default.
- W2022971702 hasConcept C161584116 @default.
- W2022971702 hasConcept C162324750 @default.
- W2022971702 hasConcept C165464430 @default.
- W2022971702 hasConcept C178650346 @default.
- W2022971702 hasConcept C182081679 @default.
- W2022971702 hasConcept C2777303404 @default.
- W2022971702 hasConcept C33923547 @default.
- W2022971702 hasConcept C41008148 @default.
- W2022971702 hasConcept C45374587 @default.
- W2022971702 hasConcept C49781872 @default.
- W2022971702 hasConcept C50522688 @default.
- W2022971702 hasConcept C9357733 @default.
- W2022971702 hasConceptScore W2022971702C105795698 @default.
- W2022971702 hasConceptScore W2022971702C11413529 @default.
- W2022971702 hasConceptScore W2022971702C119857082 @default.
- W2022971702 hasConceptScore W2022971702C161584116 @default.
- W2022971702 hasConceptScore W2022971702C162324750 @default.
- W2022971702 hasConceptScore W2022971702C165464430 @default.
- W2022971702 hasConceptScore W2022971702C178650346 @default.
- W2022971702 hasConceptScore W2022971702C182081679 @default.
- W2022971702 hasConceptScore W2022971702C2777303404 @default.
- W2022971702 hasConceptScore W2022971702C33923547 @default.
- W2022971702 hasConceptScore W2022971702C41008148 @default.
- W2022971702 hasConceptScore W2022971702C45374587 @default.
- W2022971702 hasConceptScore W2022971702C49781872 @default.
- W2022971702 hasConceptScore W2022971702C50522688 @default.
- W2022971702 hasConceptScore W2022971702C9357733 @default.
- W2022971702 hasFunder F4320321040 @default.
- W2022971702 hasLocation W20229717021 @default.
- W2022971702 hasOpenAccess W2022971702 @default.
- W2022971702 hasPrimaryLocation W20229717021 @default.
- W2022971702 hasRelatedWork W1531278648 @default.