Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022983100> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2022983100 abstract "The parallel repetition theorem states that for any Two Prover Game with value at most 1-€ (for € <; 1/2), the value of the game repeated n times in parallel is at most (1 - € <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>3</sup> ) <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Ω(n/s)</sup> , where s is the length of the answers of the two provers [24], [17]. For Projection Games, the bound on the value of the game repeated n times in parallel was improved to (1 - € <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> ) <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Ω(n)</sup> [23] and this bound was shown to be tight [25]. In this paper we study the case where the underlying distribution, according to which the questions for the two provers are generated, is uniform over the edges of a (bipartite) expander graph. We show that if λ is the (normalized) spectral gap of the underlying graph, the value of the repeated game is at most (1 - € <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> ) <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Ω(c(λ)·n/s)</sup> , where c(λ) = poly(λ); and if in addition the game is a projection game, we obtain a bound of (1 - €) <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Ω(c(λ)·n)</sup> , where c(λ) = poly(λ), that is, a strong parallel repetition theorem (when λ is constant). This gives a strong parallel repetition theorem for a large class of two prover games." @default.
- W2022983100 created "2016-06-24" @default.
- W2022983100 creator A5041545934 @default.
- W2022983100 creator A5052786725 @default.
- W2022983100 date "2012-06-01" @default.
- W2022983100 modified "2023-09-23" @default.
- W2022983100 title "A Strong Parallel Repetition Theorem for Projection Games on Expanders" @default.
- W2022983100 cites W1631603072 @default.
- W2022983100 cites W1970259241 @default.
- W2022983100 cites W1979790324 @default.
- W2022983100 cites W1993111701 @default.
- W2022983100 cites W1999032440 @default.
- W2022983100 cites W2010631958 @default.
- W2022983100 cites W2016232593 @default.
- W2022983100 cites W2051184870 @default.
- W2022983100 cites W2102373437 @default.
- W2022983100 cites W2111385661 @default.
- W2022983100 cites W2137955570 @default.
- W2022983100 cites W2143996311 @default.
- W2022983100 cites W2155618818 @default.
- W2022983100 cites W2218607027 @default.
- W2022983100 cites W2951124766 @default.
- W2022983100 cites W3141099616 @default.
- W2022983100 cites W3179843568 @default.
- W2022983100 cites W4242357733 @default.
- W2022983100 cites W4246684182 @default.
- W2022983100 doi "https://doi.org/10.1109/ccc.2012.11" @default.
- W2022983100 hasPublicationYear "2012" @default.
- W2022983100 type Work @default.
- W2022983100 sameAs 2022983100 @default.
- W2022983100 citedByCount "16" @default.
- W2022983100 countsByYear W20229831002012 @default.
- W2022983100 countsByYear W20229831002013 @default.
- W2022983100 countsByYear W20229831002014 @default.
- W2022983100 countsByYear W20229831002015 @default.
- W2022983100 countsByYear W20229831002018 @default.
- W2022983100 countsByYear W20229831002021 @default.
- W2022983100 countsByYear W20229831002022 @default.
- W2022983100 crossrefType "proceedings-article" @default.
- W2022983100 hasAuthorship W2022983100A5041545934 @default.
- W2022983100 hasAuthorship W2022983100A5052786725 @default.
- W2022983100 hasConcept C11413529 @default.
- W2022983100 hasConcept C114614502 @default.
- W2022983100 hasConcept C118615104 @default.
- W2022983100 hasConcept C119857082 @default.
- W2022983100 hasConcept C12595997 @default.
- W2022983100 hasConcept C132525143 @default.
- W2022983100 hasConcept C197657726 @default.
- W2022983100 hasConcept C203776342 @default.
- W2022983100 hasConcept C22149727 @default.
- W2022983100 hasConcept C2776291640 @default.
- W2022983100 hasConcept C33923547 @default.
- W2022983100 hasConcept C41008148 @default.
- W2022983100 hasConcept C57493831 @default.
- W2022983100 hasConceptScore W2022983100C11413529 @default.
- W2022983100 hasConceptScore W2022983100C114614502 @default.
- W2022983100 hasConceptScore W2022983100C118615104 @default.
- W2022983100 hasConceptScore W2022983100C119857082 @default.
- W2022983100 hasConceptScore W2022983100C12595997 @default.
- W2022983100 hasConceptScore W2022983100C132525143 @default.
- W2022983100 hasConceptScore W2022983100C197657726 @default.
- W2022983100 hasConceptScore W2022983100C203776342 @default.
- W2022983100 hasConceptScore W2022983100C22149727 @default.
- W2022983100 hasConceptScore W2022983100C2776291640 @default.
- W2022983100 hasConceptScore W2022983100C33923547 @default.
- W2022983100 hasConceptScore W2022983100C41008148 @default.
- W2022983100 hasConceptScore W2022983100C57493831 @default.
- W2022983100 hasLocation W20229831001 @default.
- W2022983100 hasOpenAccess W2022983100 @default.
- W2022983100 hasPrimaryLocation W20229831001 @default.
- W2022983100 hasRelatedWork W2158949528 @default.
- W2022983100 hasRelatedWork W2375312871 @default.
- W2022983100 hasRelatedWork W2963671725 @default.
- W2022983100 hasRelatedWork W2989925696 @default.
- W2022983100 hasRelatedWork W3086542228 @default.
- W2022983100 hasRelatedWork W3205099810 @default.
- W2022983100 hasRelatedWork W3210704652 @default.
- W2022983100 hasRelatedWork W4286978554 @default.
- W2022983100 hasRelatedWork W4297730031 @default.
- W2022983100 hasRelatedWork W782850337 @default.
- W2022983100 isParatext "false" @default.
- W2022983100 isRetracted "false" @default.
- W2022983100 magId "2022983100" @default.
- W2022983100 workType "article" @default.