Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022986211> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2022986211 endingPage "142" @default.
- W2022986211 startingPage "135" @default.
- W2022986211 abstract "In this paper, we propose a flexible knowledge representation framework which utilizes Symbolic Regression to learn and mathematical expressions to represent the knowledge to be captured from data. In this approach, learning algorithms are used to generate new insights which can be added to domain knowledge bases supporting again symbolic regression. This is used for the generalization of the well-known regression analysis to fulfill supervised classification. The approach aims to produce a learning model which best separates the class members of a labeled training set. The class boundaries are given by a separation surface which is represented by the level set of a model function. The separation boundary is defined by the respective equation. In our symbolic approach, the learned knowledge model is represented by mathematical formulas and it is composed of an optimum set of expressions of a given superset. We show that this property gives human experts options to gain additional insights into the application domain. Furthermore, the representation in terms of mathematical formulas (e.g., the analytical model and its first and second derivative) adds additional value to the classifier and enables to answer questions, which sub-symbolic classifier approaches cannot. The symbolic representation of the models enables an interpretation by human experts. Existing and previously known expert knowledge can be added to the developed knowledge representation framework or it can be used as constraints. Additionally, the knowledge acquisition framework can be repeated several times. In each step, new insights from the search process can be added to the knowledge base to improve the overall performance of the proposed learning algorithms." @default.
- W2022986211 created "2016-06-24" @default.
- W2022986211 creator A5005302320 @default.
- W2022986211 creator A5011488132 @default.
- W2022986211 date "2012-01-01" @default.
- W2022986211 modified "2023-09-27" @default.
- W2022986211 title "Learn More about Your Data: A Symbolic Regression Knowledge Representation Framework" @default.
- W2022986211 cites W133135257 @default.
- W2022986211 cites W1489537150 @default.
- W2022986211 cites W1503370304 @default.
- W2022986211 cites W1554944419 @default.
- W2022986211 cites W1576818901 @default.
- W2022986211 cites W196808700 @default.
- W2022986211 cites W199024138 @default.
- W2022986211 cites W1995341919 @default.
- W2022986211 cites W2036737894 @default.
- W2022986211 cites W2099045960 @default.
- W2022986211 cites W2105678112 @default.
- W2022986211 cites W2111431088 @default.
- W2022986211 cites W2122988375 @default.
- W2022986211 cites W2152632951 @default.
- W2022986211 cites W2157472761 @default.
- W2022986211 cites W2476507505 @default.
- W2022986211 cites W2799061466 @default.
- W2022986211 cites W3120740533 @default.
- W2022986211 cites W50076749 @default.
- W2022986211 cites W2093281118 @default.
- W2022986211 doi "https://doi.org/10.4236/ijis.2012.224018" @default.
- W2022986211 hasPublicationYear "2012" @default.
- W2022986211 type Work @default.
- W2022986211 sameAs 2022986211 @default.
- W2022986211 citedByCount "1" @default.
- W2022986211 countsByYear W20229862112016 @default.
- W2022986211 crossrefType "journal-article" @default.
- W2022986211 hasAuthorship W2022986211A5005302320 @default.
- W2022986211 hasAuthorship W2022986211A5011488132 @default.
- W2022986211 hasBestOaLocation W20229862111 @default.
- W2022986211 hasConcept C110332635 @default.
- W2022986211 hasConcept C119857082 @default.
- W2022986211 hasConcept C120567893 @default.
- W2022986211 hasConcept C124101348 @default.
- W2022986211 hasConcept C152877465 @default.
- W2022986211 hasConcept C154945302 @default.
- W2022986211 hasConcept C161301231 @default.
- W2022986211 hasConcept C17744445 @default.
- W2022986211 hasConcept C199539241 @default.
- W2022986211 hasConcept C207685749 @default.
- W2022986211 hasConcept C2776359362 @default.
- W2022986211 hasConcept C2776400721 @default.
- W2022986211 hasConcept C41008148 @default.
- W2022986211 hasConcept C4554734 @default.
- W2022986211 hasConcept C65620979 @default.
- W2022986211 hasConcept C80444323 @default.
- W2022986211 hasConcept C94625758 @default.
- W2022986211 hasConcept C95623464 @default.
- W2022986211 hasConceptScore W2022986211C110332635 @default.
- W2022986211 hasConceptScore W2022986211C119857082 @default.
- W2022986211 hasConceptScore W2022986211C120567893 @default.
- W2022986211 hasConceptScore W2022986211C124101348 @default.
- W2022986211 hasConceptScore W2022986211C152877465 @default.
- W2022986211 hasConceptScore W2022986211C154945302 @default.
- W2022986211 hasConceptScore W2022986211C161301231 @default.
- W2022986211 hasConceptScore W2022986211C17744445 @default.
- W2022986211 hasConceptScore W2022986211C199539241 @default.
- W2022986211 hasConceptScore W2022986211C207685749 @default.
- W2022986211 hasConceptScore W2022986211C2776359362 @default.
- W2022986211 hasConceptScore W2022986211C2776400721 @default.
- W2022986211 hasConceptScore W2022986211C41008148 @default.
- W2022986211 hasConceptScore W2022986211C4554734 @default.
- W2022986211 hasConceptScore W2022986211C65620979 @default.
- W2022986211 hasConceptScore W2022986211C80444323 @default.
- W2022986211 hasConceptScore W2022986211C94625758 @default.
- W2022986211 hasConceptScore W2022986211C95623464 @default.
- W2022986211 hasIssue "04" @default.
- W2022986211 hasLocation W20229862111 @default.
- W2022986211 hasOpenAccess W2022986211 @default.
- W2022986211 hasPrimaryLocation W20229862111 @default.
- W2022986211 hasRelatedWork W1519580318 @default.
- W2022986211 hasRelatedWork W1979978247 @default.
- W2022986211 hasRelatedWork W2020036714 @default.
- W2022986211 hasRelatedWork W2022986211 @default.
- W2022986211 hasRelatedWork W2050166550 @default.
- W2022986211 hasRelatedWork W2075096090 @default.
- W2022986211 hasRelatedWork W2162061621 @default.
- W2022986211 hasRelatedWork W2787986796 @default.
- W2022986211 hasRelatedWork W2904591968 @default.
- W2022986211 hasRelatedWork W3045387744 @default.
- W2022986211 hasVolume "02" @default.
- W2022986211 isParatext "false" @default.
- W2022986211 isRetracted "false" @default.
- W2022986211 magId "2022986211" @default.
- W2022986211 workType "article" @default.