Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022989251> ?p ?o ?g. }
- W2022989251 endingPage "3069" @default.
- W2022989251 startingPage "3057" @default.
- W2022989251 abstract "The presence of clusters in a data set is sometimes due to the existence of certain relations among the measured variables which vary depending on some hidden factors. In these cases, observations could be grouped in a natural way around linear and nonlinear structures and, thus, the problem of doing robust clustering around linear affine subspaces has recently been tackled through the minimization of a trimmed sum of orthogonal residuals. This “orthogonal approach” implies that there is no privileged variable playing the role of response variable or output. However, there are problems where clearly one variable is wanted to be explained in terms of the other ones and the use of vertical residuals from classical linear regression seems to be more advisable. The so-called TCLUST methodology is extended to perform robust clusterwise linear regression and a feasible algorithm for the practical implementation is proposed. The algorithm includes a “second trimming” step aimed to diminishing the effect of leverage points." @default.
- W2022989251 created "2016-06-24" @default.
- W2022989251 creator A5022532020 @default.
- W2022989251 creator A5056108169 @default.
- W2022989251 creator A5064238104 @default.
- W2022989251 creator A5069383879 @default.
- W2022989251 date "2010-12-01" @default.
- W2022989251 modified "2023-09-26" @default.
- W2022989251 title "Robust clusterwise linear regression through trimming" @default.
- W2022989251 cites W1966737217 @default.
- W2022989251 cites W1977556410 @default.
- W2022989251 cites W1978900605 @default.
- W2022989251 cites W1980262437 @default.
- W2022989251 cites W1985622505 @default.
- W2022989251 cites W1994241229 @default.
- W2022989251 cites W2027447060 @default.
- W2022989251 cites W2048298626 @default.
- W2022989251 cites W2053295697 @default.
- W2022989251 cites W2059139563 @default.
- W2022989251 cites W2059279601 @default.
- W2022989251 cites W2069120451 @default.
- W2022989251 cites W2085907449 @default.
- W2022989251 cites W2108832093 @default.
- W2022989251 cites W2112905646 @default.
- W2022989251 cites W2145876631 @default.
- W2022989251 cites W2159307101 @default.
- W2022989251 cites W3103302203 @default.
- W2022989251 cites W3104348521 @default.
- W2022989251 cites W4232663288 @default.
- W2022989251 cites W4233594481 @default.
- W2022989251 doi "https://doi.org/10.1016/j.csda.2009.07.002" @default.
- W2022989251 hasPublicationYear "2010" @default.
- W2022989251 type Work @default.
- W2022989251 sameAs 2022989251 @default.
- W2022989251 citedByCount "67" @default.
- W2022989251 countsByYear W20229892512012 @default.
- W2022989251 countsByYear W20229892512013 @default.
- W2022989251 countsByYear W20229892512014 @default.
- W2022989251 countsByYear W20229892512015 @default.
- W2022989251 countsByYear W20229892512016 @default.
- W2022989251 countsByYear W20229892512017 @default.
- W2022989251 countsByYear W20229892512018 @default.
- W2022989251 countsByYear W20229892512019 @default.
- W2022989251 countsByYear W20229892512020 @default.
- W2022989251 countsByYear W20229892512021 @default.
- W2022989251 countsByYear W20229892512023 @default.
- W2022989251 crossrefType "journal-article" @default.
- W2022989251 hasAuthorship W2022989251A5022532020 @default.
- W2022989251 hasAuthorship W2022989251A5056108169 @default.
- W2022989251 hasAuthorship W2022989251A5064238104 @default.
- W2022989251 hasAuthorship W2022989251A5069383879 @default.
- W2022989251 hasConcept C105795698 @default.
- W2022989251 hasConcept C111919701 @default.
- W2022989251 hasConcept C120068334 @default.
- W2022989251 hasConcept C12362212 @default.
- W2022989251 hasConcept C126255220 @default.
- W2022989251 hasConcept C134306372 @default.
- W2022989251 hasConcept C153083717 @default.
- W2022989251 hasConcept C162948026 @default.
- W2022989251 hasConcept C163175372 @default.
- W2022989251 hasConcept C182365436 @default.
- W2022989251 hasConcept C202444582 @default.
- W2022989251 hasConcept C2524010 @default.
- W2022989251 hasConcept C27574286 @default.
- W2022989251 hasConcept C32224588 @default.
- W2022989251 hasConcept C33923547 @default.
- W2022989251 hasConcept C41008148 @default.
- W2022989251 hasConcept C48921125 @default.
- W2022989251 hasConcept C56951928 @default.
- W2022989251 hasConcept C73555534 @default.
- W2022989251 hasConcept C83546350 @default.
- W2022989251 hasConcept C92757383 @default.
- W2022989251 hasConceptScore W2022989251C105795698 @default.
- W2022989251 hasConceptScore W2022989251C111919701 @default.
- W2022989251 hasConceptScore W2022989251C120068334 @default.
- W2022989251 hasConceptScore W2022989251C12362212 @default.
- W2022989251 hasConceptScore W2022989251C126255220 @default.
- W2022989251 hasConceptScore W2022989251C134306372 @default.
- W2022989251 hasConceptScore W2022989251C153083717 @default.
- W2022989251 hasConceptScore W2022989251C162948026 @default.
- W2022989251 hasConceptScore W2022989251C163175372 @default.
- W2022989251 hasConceptScore W2022989251C182365436 @default.
- W2022989251 hasConceptScore W2022989251C202444582 @default.
- W2022989251 hasConceptScore W2022989251C2524010 @default.
- W2022989251 hasConceptScore W2022989251C27574286 @default.
- W2022989251 hasConceptScore W2022989251C32224588 @default.
- W2022989251 hasConceptScore W2022989251C33923547 @default.
- W2022989251 hasConceptScore W2022989251C41008148 @default.
- W2022989251 hasConceptScore W2022989251C48921125 @default.
- W2022989251 hasConceptScore W2022989251C56951928 @default.
- W2022989251 hasConceptScore W2022989251C73555534 @default.
- W2022989251 hasConceptScore W2022989251C83546350 @default.
- W2022989251 hasConceptScore W2022989251C92757383 @default.
- W2022989251 hasIssue "12" @default.
- W2022989251 hasLocation W20229892511 @default.
- W2022989251 hasOpenAccess W2022989251 @default.
- W2022989251 hasPrimaryLocation W20229892511 @default.
- W2022989251 hasRelatedWork W162009249 @default.