Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022996248> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2022996248 endingPage "529" @default.
- W2022996248 startingPage "522" @default.
- W2022996248 abstract "We address the problem of variable selection within the pattern recognition engine of multisensor systems. This problem arises when there is high dimensionality in the data used for training (e.g. because a high number of sensors are used, or because many features are extracted from the response of each sensor, or both). Different variable selection techniques (including deterministic and stochastic methods) have been coupled with neural network-based classifiers. The usefulness of each technique implemented is benchmarked by evaluating its performance in terms of three objective parameters: the success rate in classification, the dimensionality of the final set of variables used for training and the time needed to complete the variable selection procedure. The database consisted of 96 measurements of ammonia, acetone and o-xylene vapours and their binary mixtures gathered using a metal oxide gas sensor array. Each measurement was described by 120 variables (12 sensors and 10 parameters each). A new strategy for variable selection, which is based on a two-step approach, is introduced that leads to the building of parsimonious classification models based on either the fuzzy ARTMAP or the probabilistic neural networks. For example, a 91.66% success rate in the simultaneous identification and quantification of the species and their mixtures was obtained using nine input variables only (out of the 120 available). This process of variable selection was conducted in two-step, i.e. a coarse selection based on a variance criterion followed by a simulated annealing process. This two-step variable selection took about 10 min to complete in a Pentium 4 PC platform." @default.
- W2022996248 created "2016-06-24" @default.
- W2022996248 creator A5013786564 @default.
- W2022996248 creator A5032791705 @default.
- W2022996248 creator A5057425358 @default.
- W2022996248 creator A5075260416 @default.
- W2022996248 creator A5084239219 @default.
- W2022996248 date "2006-03-01" @default.
- W2022996248 modified "2023-10-01" @default.
- W2022996248 title "Coupling fast variable selection methods to neural network-based classifiers: Application to multisensor systems" @default.
- W2022996248 cites W1965431799 @default.
- W2022996248 cites W1971256383 @default.
- W2022996248 cites W1971559158 @default.
- W2022996248 cites W1973383216 @default.
- W2022996248 cites W1977393463 @default.
- W2022996248 cites W1979876492 @default.
- W2022996248 cites W1984692084 @default.
- W2022996248 cites W1992824238 @default.
- W2022996248 cites W2006463578 @default.
- W2022996248 cites W2015981295 @default.
- W2022996248 cites W2019054517 @default.
- W2022996248 cites W2028749140 @default.
- W2022996248 cites W2066607517 @default.
- W2022996248 cites W2067499424 @default.
- W2022996248 cites W2071136596 @default.
- W2022996248 cites W2088857433 @default.
- W2022996248 cites W2091874686 @default.
- W2022996248 cites W2126113286 @default.
- W2022996248 doi "https://doi.org/10.1016/j.snb.2005.04.046" @default.
- W2022996248 hasPublicationYear "2006" @default.
- W2022996248 type Work @default.
- W2022996248 sameAs 2022996248 @default.
- W2022996248 citedByCount "22" @default.
- W2022996248 countsByYear W20229962482012 @default.
- W2022996248 countsByYear W20229962482016 @default.
- W2022996248 countsByYear W20229962482019 @default.
- W2022996248 countsByYear W20229962482020 @default.
- W2022996248 crossrefType "journal-article" @default.
- W2022996248 hasAuthorship W2022996248A5013786564 @default.
- W2022996248 hasAuthorship W2022996248A5032791705 @default.
- W2022996248 hasAuthorship W2022996248A5057425358 @default.
- W2022996248 hasAuthorship W2022996248A5075260416 @default.
- W2022996248 hasAuthorship W2022996248A5084239219 @default.
- W2022996248 hasConcept C111030470 @default.
- W2022996248 hasConcept C119857082 @default.
- W2022996248 hasConcept C124101348 @default.
- W2022996248 hasConcept C134306372 @default.
- W2022996248 hasConcept C148483581 @default.
- W2022996248 hasConcept C153180895 @default.
- W2022996248 hasConcept C154945302 @default.
- W2022996248 hasConcept C182365436 @default.
- W2022996248 hasConcept C33923547 @default.
- W2022996248 hasConcept C41008148 @default.
- W2022996248 hasConcept C50644808 @default.
- W2022996248 hasConcept C81917197 @default.
- W2022996248 hasConceptScore W2022996248C111030470 @default.
- W2022996248 hasConceptScore W2022996248C119857082 @default.
- W2022996248 hasConceptScore W2022996248C124101348 @default.
- W2022996248 hasConceptScore W2022996248C134306372 @default.
- W2022996248 hasConceptScore W2022996248C148483581 @default.
- W2022996248 hasConceptScore W2022996248C153180895 @default.
- W2022996248 hasConceptScore W2022996248C154945302 @default.
- W2022996248 hasConceptScore W2022996248C182365436 @default.
- W2022996248 hasConceptScore W2022996248C33923547 @default.
- W2022996248 hasConceptScore W2022996248C41008148 @default.
- W2022996248 hasConceptScore W2022996248C50644808 @default.
- W2022996248 hasConceptScore W2022996248C81917197 @default.
- W2022996248 hasIssue "1" @default.
- W2022996248 hasLocation W20229962481 @default.
- W2022996248 hasOpenAccess W2022996248 @default.
- W2022996248 hasPrimaryLocation W20229962481 @default.
- W2022996248 hasRelatedWork W2166303055 @default.
- W2022996248 hasRelatedWork W2316780152 @default.
- W2022996248 hasRelatedWork W2599424341 @default.
- W2022996248 hasRelatedWork W2767021621 @default.
- W2022996248 hasRelatedWork W3087493185 @default.
- W2022996248 hasRelatedWork W3163334550 @default.
- W2022996248 hasRelatedWork W3200179079 @default.
- W2022996248 hasRelatedWork W3207278327 @default.
- W2022996248 hasRelatedWork W4293525103 @default.
- W2022996248 hasRelatedWork W2345184372 @default.
- W2022996248 hasVolume "114" @default.
- W2022996248 isParatext "false" @default.
- W2022996248 isRetracted "false" @default.
- W2022996248 magId "2022996248" @default.
- W2022996248 workType "article" @default.