Matches in SemOpenAlex for { <https://semopenalex.org/work/W2022998385> ?p ?o ?g. }
- W2022998385 endingPage "126" @default.
- W2022998385 startingPage "115" @default.
- W2022998385 abstract "There is a growing body of evidence showing that machine learning regression results in more accurate structure-based prediction of protein-ligand binding affinity. Docking methods that aim at optimizing the affinity of ligands for a target rely on how accurate their predicted ranking is. However, despite their proven advantages, machine-learning scoring functions are still not widely applied. This seems to be due to insufficient understanding of their properties and the lack of user-friendly software implementing them. Here we present a study where the accuracy of AutoDock Vina, arguably the most commonly-used docking software, is strongly improved by following a machine learning approach. We also analyse the factors that are responsible for this improvement and their generality. Most importantly, with the help of a proposed benchmark, we demonstrate that this improvement will be larger as more data becomes available for training Random Forest models, as regression models implying additive functional forms do not improve with more training data. We discuss how the latter opens the door to new opportunities in scoring function development. In order to facilitate the translation of this advance to enhance structure-based molecular design, we provide software to directly re-score Vina-generated poses and thus strongly improve their predicted binding affinity. The software is available at http://istar.cse.cuhk.edu.hk/rf-score-3.tgz and http://crcm. marseille.inserm.fr/fileadmin/rf-score-3.tgz" @default.
- W2022998385 created "2016-06-24" @default.
- W2022998385 creator A5005597587 @default.
- W2022998385 creator A5046863635 @default.
- W2022998385 creator A5077261151 @default.
- W2022998385 creator A5088763749 @default.
- W2022998385 date "2015-02-01" @default.
- W2022998385 modified "2023-10-13" @default.
- W2022998385 title "Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets" @default.
- W2022998385 cites W1605578858 @default.
- W2022998385 cites W1656114533 @default.
- W2022998385 cites W1973191530 @default.
- W2022998385 cites W1973974137 @default.
- W2022998385 cites W1977056833 @default.
- W2022998385 cites W1977467384 @default.
- W2022998385 cites W1979414133 @default.
- W2022998385 cites W1979966120 @default.
- W2022998385 cites W1980047995 @default.
- W2022998385 cites W1981030305 @default.
- W2022998385 cites W1982957346 @default.
- W2022998385 cites W1984021058 @default.
- W2022998385 cites W1985588649 @default.
- W2022998385 cites W1986476355 @default.
- W2022998385 cites W1986994943 @default.
- W2022998385 cites W1988111902 @default.
- W2022998385 cites W1992441011 @default.
- W2022998385 cites W1992947643 @default.
- W2022998385 cites W1993285168 @default.
- W2022998385 cites W1993403967 @default.
- W2022998385 cites W1998568556 @default.
- W2022998385 cites W1998848097 @default.
- W2022998385 cites W2003356525 @default.
- W2022998385 cites W2004124673 @default.
- W2022998385 cites W2009841182 @default.
- W2022998385 cites W2012084558 @default.
- W2022998385 cites W2020372058 @default.
- W2022998385 cites W2020639753 @default.
- W2022998385 cites W2025006523 @default.
- W2022998385 cites W2025557696 @default.
- W2022998385 cites W2030286884 @default.
- W2022998385 cites W2031153203 @default.
- W2022998385 cites W2038542598 @default.
- W2022998385 cites W2049185580 @default.
- W2022998385 cites W2050237550 @default.
- W2022998385 cites W2053253524 @default.
- W2022998385 cites W2059885812 @default.
- W2022998385 cites W2060320699 @default.
- W2022998385 cites W2061745280 @default.
- W2022998385 cites W2064099652 @default.
- W2022998385 cites W2071957747 @default.
- W2022998385 cites W2072886335 @default.
- W2022998385 cites W2075020622 @default.
- W2022998385 cites W2085315829 @default.
- W2022998385 cites W2092723276 @default.
- W2022998385 cites W2096679774 @default.
- W2022998385 cites W2105668062 @default.
- W2022998385 cites W2108243628 @default.
- W2022998385 cites W2108245251 @default.
- W2022998385 cites W2112213938 @default.
- W2022998385 cites W2118587156 @default.
- W2022998385 cites W2120898782 @default.
- W2022998385 cites W2123768455 @default.
- W2022998385 cites W2125792789 @default.
- W2022998385 cites W2128332459 @default.
- W2022998385 cites W2148512505 @default.
- W2022998385 cites W2157760740 @default.
- W2022998385 cites W2158360182 @default.
- W2022998385 cites W2158534713 @default.
- W2022998385 cites W2162220273 @default.
- W2022998385 cites W2163816950 @default.
- W2022998385 cites W2169815691 @default.
- W2022998385 cites W2171234651 @default.
- W2022998385 cites W2471677683 @default.
- W2022998385 cites W2911964244 @default.
- W2022998385 cites W2949504121 @default.
- W2022998385 doi "https://doi.org/10.1002/minf.201400132" @default.
- W2022998385 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27490034" @default.
- W2022998385 hasPublicationYear "2015" @default.
- W2022998385 type Work @default.
- W2022998385 sameAs 2022998385 @default.
- W2022998385 citedByCount "178" @default.
- W2022998385 countsByYear W20229983852015 @default.
- W2022998385 countsByYear W20229983852016 @default.
- W2022998385 countsByYear W20229983852017 @default.
- W2022998385 countsByYear W20229983852018 @default.
- W2022998385 countsByYear W20229983852019 @default.
- W2022998385 countsByYear W20229983852020 @default.
- W2022998385 countsByYear W20229983852021 @default.
- W2022998385 countsByYear W20229983852022 @default.
- W2022998385 countsByYear W20229983852023 @default.
- W2022998385 crossrefType "journal-article" @default.
- W2022998385 hasAuthorship W2022998385A5005597587 @default.
- W2022998385 hasAuthorship W2022998385A5046863635 @default.
- W2022998385 hasAuthorship W2022998385A5077261151 @default.
- W2022998385 hasAuthorship W2022998385A5088763749 @default.
- W2022998385 hasConcept C104317684 @default.
- W2022998385 hasConcept C105795698 @default.
- W2022998385 hasConcept C119857082 @default.