Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023006058> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2023006058 endingPage "232" @default.
- W2023006058 startingPage "219" @default.
- W2023006058 abstract "Abstract This paper presents parallel implementations of several Hidden Markov Model (HMM) algorithms on the Orthogonal MultiProcessor (OMP) architecture. In many applications of HMM, input feature vector, model topology, and model parameters are different from one to another. Developing HMM algorithms on a scalable and general purpose multiprocessor architecture will reduce the complexity of the algorithms and improve performance. Parallel model training, recognition, and Viterbi algorithm for HMM are investigated. It shows linear speed-up over conventional uniprocessor methods. The result can be applied to a lot of applications where HMM is used and real time performance is required." @default.
- W2023006058 created "2016-06-24" @default.
- W2023006058 creator A5010904764 @default.
- W2023006058 creator A5047016368 @default.
- W2023006058 date "1992-02-01" @default.
- W2023006058 modified "2023-10-17" @default.
- W2023006058 title "Parallel algorithms for hidden markov models on the orthogonal multiprocessor" @default.
- W2023006058 cites W1628850721 @default.
- W2023006058 cites W1920769845 @default.
- W2023006058 cites W2021760654 @default.
- W2023006058 cites W2051189822 @default.
- W2023006058 cites W2054511265 @default.
- W2023006058 cites W2077804127 @default.
- W2023006058 cites W2086699924 @default.
- W2023006058 cites W2105594594 @default.
- W2023006058 cites W2111655906 @default.
- W2023006058 cites W2118748694 @default.
- W2023006058 cites W2131513205 @default.
- W2023006058 cites W2142384583 @default.
- W2023006058 cites W2171850596 @default.
- W2023006058 cites W2169951677 @default.
- W2023006058 doi "https://doi.org/10.1016/0031-3203(92)90103-p" @default.
- W2023006058 hasPublicationYear "1992" @default.
- W2023006058 type Work @default.
- W2023006058 sameAs 2023006058 @default.
- W2023006058 citedByCount "3" @default.
- W2023006058 countsByYear W20230060582012 @default.
- W2023006058 crossrefType "journal-article" @default.
- W2023006058 hasAuthorship W2023006058A5010904764 @default.
- W2023006058 hasAuthorship W2023006058A5047016368 @default.
- W2023006058 hasConcept C11413529 @default.
- W2023006058 hasConcept C119857082 @default.
- W2023006058 hasConcept C173608175 @default.
- W2023006058 hasConcept C41008148 @default.
- W2023006058 hasConcept C4822641 @default.
- W2023006058 hasConcept C98763669 @default.
- W2023006058 hasConceptScore W2023006058C11413529 @default.
- W2023006058 hasConceptScore W2023006058C119857082 @default.
- W2023006058 hasConceptScore W2023006058C173608175 @default.
- W2023006058 hasConceptScore W2023006058C41008148 @default.
- W2023006058 hasConceptScore W2023006058C4822641 @default.
- W2023006058 hasConceptScore W2023006058C98763669 @default.
- W2023006058 hasIssue "2" @default.
- W2023006058 hasLocation W20230060581 @default.
- W2023006058 hasOpenAccess W2023006058 @default.
- W2023006058 hasPrimaryLocation W20230060581 @default.
- W2023006058 hasRelatedWork W1517776641 @default.
- W2023006058 hasRelatedWork W1525693705 @default.
- W2023006058 hasRelatedWork W1577207287 @default.
- W2023006058 hasRelatedWork W1867962035 @default.
- W2023006058 hasRelatedWork W2010936801 @default.
- W2023006058 hasRelatedWork W2104603305 @default.
- W2023006058 hasRelatedWork W2805154545 @default.
- W2023006058 hasRelatedWork W300950598 @default.
- W2023006058 hasRelatedWork W4252830195 @default.
- W2023006058 hasRelatedWork W99192079 @default.
- W2023006058 hasVolume "25" @default.
- W2023006058 isParatext "false" @default.
- W2023006058 isRetracted "false" @default.
- W2023006058 magId "2023006058" @default.
- W2023006058 workType "article" @default.