Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023016370> ?p ?o ?g. }
- W2023016370 endingPage "252" @default.
- W2023016370 startingPage "247" @default.
- W2023016370 abstract "Magnetite nanoparticles with high self-heating capacity and low toxicity characteristics are a promising candidate for cancer hyperthermia treatment. In order to achieve minimum dosage to a patient, magnetic nanoparticles with high heating capacity are needed. In addition, the influence of physiological factors on the heat capacity of a material should be investigated in order to determine the feasibility. In this study, magnetite nanoparticles coated with lauric acid were prepared by co-precipitation of Fe3+:Fe2+ in a ratio of 2:1, 5:3, 3:2, and 4:3, and the pH was controlled using NaOH. Structural and magnetization characterization by means of X-ray diffractometry (XRD) and a superconducting quantum interference device (SQUID) revealed that the main species was Fe3O4 and further showed that most of the nanoparticles exhibited superparamagnetic properties. All of the magnetic nanoparticles showed a specific absorption rate (SAR) increase that was linear with the magnetic field strength and frequency of the alternating magnetic field. Among all, the magnetic nanoparticles prepared in a 3:2 ratio showed the highest SAR. To further test the influence of physiological factors on the 3:2 ratio magnetic nanoparticles, we simulated the environment with protein (bovine serum albumin, BSA), blood sugar (dextrose), electrolytes (commercial norm-saline) and viscosity (glycerol) to examine the heating capacity under these conditions. Our results showed that the SAR value was unaffected by the protein and blood sugar environments. On the other hand, the SAR value was significantly reduced in the electrolyte environment, due to precipitation and aggregation with sodium ions. For the simulated viscous environment with glycerol, the result showed that the SAR values reduced with increasing glycerol concentration. We have further tested the heating capacity contribution from the Néel mechanism by trapping the magnetic nanoparticles in a solid form of polydimethylsiloxane (PDMS) to eliminate the heating pathway due to a Brownian motion. We measured the heating capability and determined that 47% of the total heat generated by the magnetic nanoparticles was from the Néel mechanism contribution. For evaluating magnetic nanoparticles, this method provides a fast and low cost method for determining qualitative and quantitative information measurement for the effect of physiological interference and could greatly reduce the cost and time by in vitro or animal test." @default.
- W2023016370 created "2016-06-24" @default.
- W2023016370 creator A5064896492 @default.
- W2023016370 creator A5066993913 @default.
- W2023016370 creator A5091783669 @default.
- W2023016370 date "2010-01-01" @default.
- W2023016370 modified "2023-09-26" @default.
- W2023016370 title "Simulating physiological conditions to evaluate nanoparticles for magnetic fluid hyperthermia (MFH) therapy applications" @default.
- W2023016370 cites W150451159 @default.
- W2023016370 cites W1963513400 @default.
- W2023016370 cites W1972582749 @default.
- W2023016370 cites W1988217845 @default.
- W2023016370 cites W1993493912 @default.
- W2023016370 cites W1993823260 @default.
- W2023016370 cites W1994170140 @default.
- W2023016370 cites W2002686259 @default.
- W2023016370 cites W2007289284 @default.
- W2023016370 cites W2012730450 @default.
- W2023016370 cites W2017068003 @default.
- W2023016370 cites W2023070174 @default.
- W2023016370 cites W2025226732 @default.
- W2023016370 cites W2029547209 @default.
- W2023016370 cites W2034973407 @default.
- W2023016370 cites W2045978018 @default.
- W2023016370 cites W2047156011 @default.
- W2023016370 cites W2048595637 @default.
- W2023016370 cites W2049651963 @default.
- W2023016370 cites W2059527518 @default.
- W2023016370 cites W2069185690 @default.
- W2023016370 cites W2079757055 @default.
- W2023016370 cites W2082917454 @default.
- W2023016370 cites W2092713252 @default.
- W2023016370 cites W2101991025 @default.
- W2023016370 cites W2112794532 @default.
- W2023016370 cites W2122446958 @default.
- W2023016370 cites W2124371680 @default.
- W2023016370 cites W2131544387 @default.
- W2023016370 cites W2149934235 @default.
- W2023016370 cites W2153420770 @default.
- W2023016370 cites W2155852581 @default.
- W2023016370 cites W2163706749 @default.
- W2023016370 doi "https://doi.org/10.1016/j.jmmm.2009.09.006" @default.
- W2023016370 hasPublicationYear "2010" @default.
- W2023016370 type Work @default.
- W2023016370 sameAs 2023016370 @default.
- W2023016370 citedByCount "50" @default.
- W2023016370 countsByYear W20230163702012 @default.
- W2023016370 countsByYear W20230163702013 @default.
- W2023016370 countsByYear W20230163702014 @default.
- W2023016370 countsByYear W20230163702015 @default.
- W2023016370 countsByYear W20230163702016 @default.
- W2023016370 countsByYear W20230163702017 @default.
- W2023016370 countsByYear W20230163702018 @default.
- W2023016370 countsByYear W20230163702019 @default.
- W2023016370 countsByYear W20230163702020 @default.
- W2023016370 countsByYear W20230163702021 @default.
- W2023016370 countsByYear W20230163702022 @default.
- W2023016370 countsByYear W20230163702023 @default.
- W2023016370 crossrefType "journal-article" @default.
- W2023016370 hasAuthorship W2023016370A5064896492 @default.
- W2023016370 hasAuthorship W2023016370A5066993913 @default.
- W2023016370 hasAuthorship W2023016370A5091783669 @default.
- W2023016370 hasConcept C115260700 @default.
- W2023016370 hasConcept C121332964 @default.
- W2023016370 hasConcept C127413603 @default.
- W2023016370 hasConcept C147789679 @default.
- W2023016370 hasConcept C155672457 @default.
- W2023016370 hasConcept C171250308 @default.
- W2023016370 hasConcept C17525397 @default.
- W2023016370 hasConcept C185592680 @default.
- W2023016370 hasConcept C192562407 @default.
- W2023016370 hasConcept C23792430 @default.
- W2023016370 hasConcept C2778664220 @default.
- W2023016370 hasConcept C2780838151 @default.
- W2023016370 hasConcept C32546565 @default.
- W2023016370 hasConcept C42360764 @default.
- W2023016370 hasConcept C46141821 @default.
- W2023016370 hasConcept C62520636 @default.
- W2023016370 hasConcept C68801617 @default.
- W2023016370 hasConcept C87023908 @default.
- W2023016370 hasConceptScore W2023016370C115260700 @default.
- W2023016370 hasConceptScore W2023016370C121332964 @default.
- W2023016370 hasConceptScore W2023016370C127413603 @default.
- W2023016370 hasConceptScore W2023016370C147789679 @default.
- W2023016370 hasConceptScore W2023016370C155672457 @default.
- W2023016370 hasConceptScore W2023016370C171250308 @default.
- W2023016370 hasConceptScore W2023016370C17525397 @default.
- W2023016370 hasConceptScore W2023016370C185592680 @default.
- W2023016370 hasConceptScore W2023016370C192562407 @default.
- W2023016370 hasConceptScore W2023016370C23792430 @default.
- W2023016370 hasConceptScore W2023016370C2778664220 @default.
- W2023016370 hasConceptScore W2023016370C2780838151 @default.
- W2023016370 hasConceptScore W2023016370C32546565 @default.
- W2023016370 hasConceptScore W2023016370C42360764 @default.
- W2023016370 hasConceptScore W2023016370C46141821 @default.
- W2023016370 hasConceptScore W2023016370C62520636 @default.
- W2023016370 hasConceptScore W2023016370C68801617 @default.
- W2023016370 hasConceptScore W2023016370C87023908 @default.