Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023103251> ?p ?o ?g. }
- W2023103251 endingPage "7850" @default.
- W2023103251 startingPage "7815" @default.
- W2023103251 abstract "We present a new approach to Bayesian inference that entirely avoids Markov chain simulation, by constructing a map that pushes forward the prior measure to the posterior measure. Existence and uniqueness of a suitable measure-preserving map is established by formulating the problem in the context of optimal transport theory. We discuss various means of explicitly parameterizing the map and computing it efficiently through solution of an optimization problem, exploiting gradient information from the forward model when possible. The resulting algorithm overcomes many of the computational bottlenecks associated with Markov chain Monte Carlo. Advantages of a map-based representation of the posterior include analytical expressions for posterior moments and the ability to generate arbitrary numbers of independent posterior samples without additional likelihood evaluations or forward solves. The optimization approach also provides clear convergence criteria for posterior approximation and facilitates model selection through automatic evaluation of the marginal likelihood. We demonstrate the accuracy and efficiency of the approach on nonlinear inverse problems of varying dimension, involving the inference of parameters appearing in ordinary and partial differential equations." @default.
- W2023103251 created "2016-06-24" @default.
- W2023103251 creator A5056787868 @default.
- W2023103251 creator A5071702167 @default.
- W2023103251 date "2012-10-01" @default.
- W2023103251 modified "2023-10-15" @default.
- W2023103251 title "Bayesian inference with optimal maps" @default.
- W2023103251 cites W1496451467 @default.
- W2023103251 cites W1512208174 @default.
- W2023103251 cites W1545319692 @default.
- W2023103251 cites W1547595776 @default.
- W2023103251 cites W1992208280 @default.
- W2023103251 cites W1995565517 @default.
- W2023103251 cites W1998037613 @default.
- W2023103251 cites W1999174665 @default.
- W2023103251 cites W2004247736 @default.
- W2023103251 cites W2004767122 @default.
- W2023103251 cites W2010737928 @default.
- W2023103251 cites W2017880874 @default.
- W2023103251 cites W2018159038 @default.
- W2023103251 cites W2024399828 @default.
- W2023103251 cites W2030819485 @default.
- W2023103251 cites W2041865295 @default.
- W2023103251 cites W2042319042 @default.
- W2023103251 cites W2042770989 @default.
- W2023103251 cites W2047978125 @default.
- W2023103251 cites W2056760934 @default.
- W2023103251 cites W2071544114 @default.
- W2023103251 cites W2071809913 @default.
- W2023103251 cites W2074686342 @default.
- W2023103251 cites W2075119929 @default.
- W2023103251 cites W2075385817 @default.
- W2023103251 cites W2082226041 @default.
- W2023103251 cites W2082261407 @default.
- W2023103251 cites W2096413780 @default.
- W2023103251 cites W2118587791 @default.
- W2023103251 cites W2119179880 @default.
- W2023103251 cites W2132883347 @default.
- W2023103251 cites W2134759932 @default.
- W2023103251 cites W2138309709 @default.
- W2023103251 cites W2139798157 @default.
- W2023103251 cites W2149498546 @default.
- W2023103251 cites W2152657433 @default.
- W2023103251 cites W2161442523 @default.
- W2023103251 cites W2162340617 @default.
- W2023103251 cites W2172178958 @default.
- W2023103251 cites W2321957512 @default.
- W2023103251 cites W2569729041 @default.
- W2023103251 cites W2964103113 @default.
- W2023103251 cites W4211177544 @default.
- W2023103251 doi "https://doi.org/10.1016/j.jcp.2012.07.022" @default.
- W2023103251 hasPublicationYear "2012" @default.
- W2023103251 type Work @default.
- W2023103251 sameAs 2023103251 @default.
- W2023103251 citedByCount "216" @default.
- W2023103251 countsByYear W20231032512012 @default.
- W2023103251 countsByYear W20231032512013 @default.
- W2023103251 countsByYear W20231032512014 @default.
- W2023103251 countsByYear W20231032512015 @default.
- W2023103251 countsByYear W20231032512016 @default.
- W2023103251 countsByYear W20231032512017 @default.
- W2023103251 countsByYear W20231032512018 @default.
- W2023103251 countsByYear W20231032512019 @default.
- W2023103251 countsByYear W20231032512020 @default.
- W2023103251 countsByYear W20231032512021 @default.
- W2023103251 countsByYear W20231032512022 @default.
- W2023103251 countsByYear W20231032512023 @default.
- W2023103251 crossrefType "journal-article" @default.
- W2023103251 hasAuthorship W2023103251A5056787868 @default.
- W2023103251 hasAuthorship W2023103251A5071702167 @default.
- W2023103251 hasBestOaLocation W20231032512 @default.
- W2023103251 hasConcept C107673813 @default.
- W2023103251 hasConcept C111350023 @default.
- W2023103251 hasConcept C11413529 @default.
- W2023103251 hasConcept C119857082 @default.
- W2023103251 hasConcept C124101348 @default.
- W2023103251 hasConcept C126255220 @default.
- W2023103251 hasConcept C134306372 @default.
- W2023103251 hasConcept C135252773 @default.
- W2023103251 hasConcept C151730666 @default.
- W2023103251 hasConcept C154945302 @default.
- W2023103251 hasConcept C160234255 @default.
- W2023103251 hasConcept C2776214188 @default.
- W2023103251 hasConcept C2779343474 @default.
- W2023103251 hasConcept C2780009758 @default.
- W2023103251 hasConcept C33923547 @default.
- W2023103251 hasConcept C41008148 @default.
- W2023103251 hasConcept C57830394 @default.
- W2023103251 hasConcept C86803240 @default.
- W2023103251 hasConcept C98763669 @default.
- W2023103251 hasConceptScore W2023103251C107673813 @default.
- W2023103251 hasConceptScore W2023103251C111350023 @default.
- W2023103251 hasConceptScore W2023103251C11413529 @default.
- W2023103251 hasConceptScore W2023103251C119857082 @default.
- W2023103251 hasConceptScore W2023103251C124101348 @default.
- W2023103251 hasConceptScore W2023103251C126255220 @default.
- W2023103251 hasConceptScore W2023103251C134306372 @default.
- W2023103251 hasConceptScore W2023103251C135252773 @default.