Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023108183> ?p ?o ?g. }
- W2023108183 endingPage "53" @default.
- W2023108183 startingPage "45" @default.
- W2023108183 abstract "Abstract The promising properties of silica-based H2-selective membranes have resulted in extensive experimental studies, but these investigations have provided limited information about the mechanism of gas permeation through these membranes. In this work we present a theory of permeation that describes the transport and physical properties of silica-based membranes of the Nanosil type. Nanosil membranes are obtained from the chemical vapor deposition of a thin silica layer on a porous support. The theory is adapted from an existing classical statistical mechanics treatment for vitreous silica glasses. It is found that in the Nanosil membranes the permeation of CO, CO2 and CH4 is inhibited relatively to that of smaller sized species such as hydrogen and the lighter noble gases. Moreover, the latter show an unusual order of gas permeation, He > H2 > D2 > Ne, which does not depend on the size or mass of the diffusing species. The theoretical description is based on jumps of the permeating species between solubility sites in a solid matrix, and assumes equilibrium sorption in the sites, random motion, and a transition state with two degrees of vibrational freedom and one degree of translational freedom. The adapted form of the theoretical equation has a term to account for the loss of rotational degrees of freedom for polyatomic species and is applicable to molecules such as H2 or D2. Agreement between theoretical values and experimentally determined points indicate that the model equations are effective in describing the unusual behavior of hydrogen and the light noble gases. The higher permeation rate of He over H2 or D2 can be accounted for by the larger number of solubility sites that can accommodate the smaller sized He atoms. The lower permeation rate of Ne is due to its lower jump frequency when compared with the vibrational frequency of the other species. The density of solubility sites and the jump distance are important parameters in this analysis. The amorphous structure of silica is formed of 5-, 6-, 7- and 8-membered Si–O bonded rings and gives rise to solubility sites whose size is approximately 0.3 nm. The jump distance should have an inverse relationship with the number of solubility sites per unit volume, but so far this has not been calculated explicitly. In this work, we apply the Perkus–Yevick treatment to a collection of randomly-distributed, non-interacting sites embedded in a solid to clarify this relationship. Our analysis shows that the jump distances used in previous descriptions of vitreous glasses are smaller than the predictions from an array of points of zero volume, which is not possible. On the other hand, the jump distances in our membranes were calculated to be around 0.8 nm, which are physically realistic. The number of solubility sites (Ns ∼ 1026 m−3) was found to be smaller by about one order of magnitude than in vitreous glasses, while the vibrational frequencies, stayed relatively unchanged. The activation energies for permeation through the silica membrane were also smaller than the ones through glass and indicate the presence of a totally different structure. The Nanosil membrane is probably formed of larger Si–O rings which give rise to more open and less dense structures." @default.
- W2023108183 created "2016-06-24" @default.
- W2023108183 creator A5013413769 @default.
- W2023108183 creator A5014047851 @default.
- W2023108183 creator A5022636662 @default.
- W2023108183 creator A5042342737 @default.
- W2023108183 date "2004-11-15" @default.
- W2023108183 modified "2023-10-18" @default.
- W2023108183 title "Theory of hydrogen permeability in nonporous silica membranes" @default.
- W2023108183 cites W105898327 @default.
- W2023108183 cites W1540743957 @default.
- W2023108183 cites W1965657967 @default.
- W2023108183 cites W1969776587 @default.
- W2023108183 cites W1980582624 @default.
- W2023108183 cites W1980696967 @default.
- W2023108183 cites W1985057995 @default.
- W2023108183 cites W1992426525 @default.
- W2023108183 cites W1999803943 @default.
- W2023108183 cites W2008958078 @default.
- W2023108183 cites W2013924195 @default.
- W2023108183 cites W2019363616 @default.
- W2023108183 cites W2021581244 @default.
- W2023108183 cites W2022074739 @default.
- W2023108183 cites W2031550631 @default.
- W2023108183 cites W2031827467 @default.
- W2023108183 cites W2037619442 @default.
- W2023108183 cites W2038131148 @default.
- W2023108183 cites W2044397311 @default.
- W2023108183 cites W2047320233 @default.
- W2023108183 cites W2047529578 @default.
- W2023108183 cites W2049242148 @default.
- W2023108183 cites W2051526425 @default.
- W2023108183 cites W2065346424 @default.
- W2023108183 cites W2067171197 @default.
- W2023108183 cites W2067853193 @default.
- W2023108183 cites W2069137663 @default.
- W2023108183 cites W2074036071 @default.
- W2023108183 cites W2076511240 @default.
- W2023108183 cites W2078669887 @default.
- W2023108183 cites W2079224645 @default.
- W2023108183 cites W2088721813 @default.
- W2023108183 cites W2092520953 @default.
- W2023108183 cites W2108643025 @default.
- W2023108183 cites W2120007718 @default.
- W2023108183 cites W2125477522 @default.
- W2023108183 cites W2326333390 @default.
- W2023108183 cites W2798585470 @default.
- W2023108183 doi "https://doi.org/10.1016/j.memsci.2004.06.046" @default.
- W2023108183 hasPublicationYear "2004" @default.
- W2023108183 type Work @default.
- W2023108183 sameAs 2023108183 @default.
- W2023108183 citedByCount "171" @default.
- W2023108183 countsByYear W20231081832012 @default.
- W2023108183 countsByYear W20231081832013 @default.
- W2023108183 countsByYear W20231081832014 @default.
- W2023108183 countsByYear W20231081832015 @default.
- W2023108183 countsByYear W20231081832016 @default.
- W2023108183 countsByYear W20231081832017 @default.
- W2023108183 countsByYear W20231081832018 @default.
- W2023108183 countsByYear W20231081832019 @default.
- W2023108183 countsByYear W20231081832020 @default.
- W2023108183 countsByYear W20231081832021 @default.
- W2023108183 countsByYear W20231081832022 @default.
- W2023108183 countsByYear W20231081832023 @default.
- W2023108183 crossrefType "journal-article" @default.
- W2023108183 hasAuthorship W2023108183A5013413769 @default.
- W2023108183 hasAuthorship W2023108183A5014047851 @default.
- W2023108183 hasAuthorship W2023108183A5022636662 @default.
- W2023108183 hasAuthorship W2023108183A5042342737 @default.
- W2023108183 hasConcept C105569014 @default.
- W2023108183 hasConcept C120882062 @default.
- W2023108183 hasConcept C127413603 @default.
- W2023108183 hasConcept C178790620 @default.
- W2023108183 hasConcept C185592680 @default.
- W2023108183 hasConcept C192562407 @default.
- W2023108183 hasConcept C41625074 @default.
- W2023108183 hasConcept C42360764 @default.
- W2023108183 hasConcept C512968161 @default.
- W2023108183 hasConcept C55493867 @default.
- W2023108183 hasConcept C6648577 @default.
- W2023108183 hasConceptScore W2023108183C105569014 @default.
- W2023108183 hasConceptScore W2023108183C120882062 @default.
- W2023108183 hasConceptScore W2023108183C127413603 @default.
- W2023108183 hasConceptScore W2023108183C178790620 @default.
- W2023108183 hasConceptScore W2023108183C185592680 @default.
- W2023108183 hasConceptScore W2023108183C192562407 @default.
- W2023108183 hasConceptScore W2023108183C41625074 @default.
- W2023108183 hasConceptScore W2023108183C42360764 @default.
- W2023108183 hasConceptScore W2023108183C512968161 @default.
- W2023108183 hasConceptScore W2023108183C55493867 @default.
- W2023108183 hasConceptScore W2023108183C6648577 @default.
- W2023108183 hasIssue "1-2" @default.
- W2023108183 hasLocation W20231081831 @default.
- W2023108183 hasOpenAccess W2023108183 @default.
- W2023108183 hasPrimaryLocation W20231081831 @default.
- W2023108183 hasRelatedWork W1968803094 @default.
- W2023108183 hasRelatedWork W1991535007 @default.
- W2023108183 hasRelatedWork W2088622004 @default.