Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023110963> ?p ?o ?g. }
- W2023110963 endingPage "287" @default.
- W2023110963 startingPage "249" @default.
- W2023110963 abstract "We review some of the results that we have obtained in the last decade on two problems related to the structure and evolution of the solar corona: How to reconstruct the magnetic field of an active region from its values measured at the photospheric level, and how to determine the evolution of the coronal field driven by the stressing of its footpoints on the photosphere and/or by flux emergence through that surface, our main goal being to elucidate the nature of the mechanisms triggering large scale eruptive processes like coronal mass ejections (CMEs). The first part of the paper is devoted to a first approach in which the coronal field is assumed to be force-free at any time (but during the late development of an eruptive event), its evolution being thus considered to be quasi-static. After presenting some general properties of this type of fields, we use this approximate model as a general framework for the reconstruction problem. To get a well posed problem, we introduce the Grad--Rubin formulation in which only a part of the photospheric data are taken into account. We present some mathematical results on this problem (existence and uniqueness of solutions), and report our method to treat it numerically in an efficient way. Thus we turn to the quasi-static boundary driven evolution problem. We find that a continuous injection of energy into a simple field (arcade or tube) by footpoints shearing leads in the ideal case to an expansion of the field which is at least as fast as at large time t, and to its eventual partial or total opening with the formation of a current sheet. The second part of the paper is concerned with a dynamic approach to the evolution problem. The full set of equations of the resistive magnetohydrodynamics is used and solved numerically in two different classes of models. In the first one, the evolution is driven by changing boundary conditions (describing shear, converging motions, flux cancellation, …) imposed at the photospheric level. In the second one, both the corona and the subphotospheric layer (top of the convection zone) are simultaneously considered, and the rising of a twisted tube below the photosphere and its emergence through that surface and subsequent evolution in the corona are followed. In all cases, a catastrophic behavior is found to follow a slow quasi-static phase. It is characterized by a rapid expansion of the field and a release of energy by reconnection. Moreover, a twisted flux rope is always observed to form during the evolution. Depending on the conditions, it is created either in equilibrium during the slow phase, then appearing as a favorable site for the support of a prominence, or during the global disruption phase. The energy of the configuration stays below that of the corresponding open field except when the driving of the evolution is ensured by flux cancellation on the boundary. In that case – to which we refer as the Flux Cancellation Model (FCM) of CME – the open field energy decreases up to a critical point at which it becomes close to the value of the magnetic energy of the configuration, and nonequilibrium sets in. The characteristics of the evolution in FCM are found to be similar in simple and complex topologies (in contrast, the Break Out Model of CME works only for a complex topology). However, when the topology is complex, there is a lowering of the confining effect of the overlying field, and the twisted rope is ejected at a faster rate." @default.
- W2023110963 created "2016-06-24" @default.
- W2023110963 creator A5021363239 @default.
- W2023110963 creator A5091132813 @default.
- W2023110963 date "2007-06-01" @default.
- W2023110963 modified "2023-09-30" @default.
- W2023110963 title "Structure and evolution of the solar coronal magnetic field" @default.
- W2023110963 cites W1632298240 @default.
- W2023110963 cites W1847156677 @default.
- W2023110963 cites W1965606324 @default.
- W2023110963 cites W1966310941 @default.
- W2023110963 cites W1967715297 @default.
- W2023110963 cites W1973030049 @default.
- W2023110963 cites W1975186314 @default.
- W2023110963 cites W1975574536 @default.
- W2023110963 cites W1976538132 @default.
- W2023110963 cites W1983382616 @default.
- W2023110963 cites W1984840155 @default.
- W2023110963 cites W1985250678 @default.
- W2023110963 cites W1988246109 @default.
- W2023110963 cites W1994272960 @default.
- W2023110963 cites W1994489980 @default.
- W2023110963 cites W1994999561 @default.
- W2023110963 cites W1996331918 @default.
- W2023110963 cites W1997512491 @default.
- W2023110963 cites W2001367674 @default.
- W2023110963 cites W2003143495 @default.
- W2023110963 cites W2005248667 @default.
- W2023110963 cites W2006195297 @default.
- W2023110963 cites W2008250247 @default.
- W2023110963 cites W2008490736 @default.
- W2023110963 cites W2011781064 @default.
- W2023110963 cites W2012930751 @default.
- W2023110963 cites W2015069526 @default.
- W2023110963 cites W2016661568 @default.
- W2023110963 cites W2016939978 @default.
- W2023110963 cites W2017367980 @default.
- W2023110963 cites W2020768313 @default.
- W2023110963 cites W2021474810 @default.
- W2023110963 cites W2023389456 @default.
- W2023110963 cites W2029672265 @default.
- W2023110963 cites W2030434294 @default.
- W2023110963 cites W2031399277 @default.
- W2023110963 cites W2031554654 @default.
- W2023110963 cites W2032779991 @default.
- W2023110963 cites W2036438378 @default.
- W2023110963 cites W2043804872 @default.
- W2023110963 cites W2045862913 @default.
- W2023110963 cites W2045901168 @default.
- W2023110963 cites W2050680726 @default.
- W2023110963 cites W2053913002 @default.
- W2023110963 cites W2054791885 @default.
- W2023110963 cites W2061705996 @default.
- W2023110963 cites W2064091149 @default.
- W2023110963 cites W2064315870 @default.
- W2023110963 cites W2069515775 @default.
- W2023110963 cites W2070561567 @default.
- W2023110963 cites W2070725324 @default.
- W2023110963 cites W2071549285 @default.
- W2023110963 cites W2071622067 @default.
- W2023110963 cites W2072085912 @default.
- W2023110963 cites W2074555748 @default.
- W2023110963 cites W2076753459 @default.
- W2023110963 cites W2078985469 @default.
- W2023110963 cites W2079341792 @default.
- W2023110963 cites W2080919608 @default.
- W2023110963 cites W2092556046 @default.
- W2023110963 cites W2093257311 @default.
- W2023110963 cites W2094893686 @default.
- W2023110963 cites W2096703960 @default.
- W2023110963 cites W2102994651 @default.
- W2023110963 cites W2119326165 @default.
- W2023110963 cites W2119873443 @default.
- W2023110963 cites W2120013354 @default.
- W2023110963 cites W2130902688 @default.
- W2023110963 cites W2134992890 @default.
- W2023110963 cites W2136854902 @default.
- W2023110963 cites W2137153582 @default.
- W2023110963 cites W2140906594 @default.
- W2023110963 cites W2147200131 @default.
- W2023110963 cites W2150023607 @default.
- W2023110963 cites W2161380941 @default.
- W2023110963 cites W2166036396 @default.
- W2023110963 cites W2166264339 @default.
- W2023110963 cites W2166632814 @default.
- W2023110963 cites W2170614455 @default.
- W2023110963 cites W3008981947 @default.
- W2023110963 cites W3016621851 @default.
- W2023110963 cites W3098656967 @default.
- W2023110963 cites W3101322676 @default.
- W2023110963 cites W3103753330 @default.
- W2023110963 cites W3104946976 @default.
- W2023110963 cites W4243415475 @default.
- W2023110963 cites W4249398132 @default.
- W2023110963 cites W50021733 @default.
- W2023110963 doi "https://doi.org/10.1080/03091920701495320" @default.
- W2023110963 hasPublicationYear "2007" @default.
- W2023110963 type Work @default.