Matches in SemOpenAlex for { <https://semopenalex.org/work/W2023116290> ?p ?o ?g. }
- W2023116290 endingPage "657" @default.
- W2023116290 startingPage "647" @default.
- W2023116290 abstract "This Review describes the different types of computational environments — such as cloud and heterogeneous computing — that are increasingly being used by life scientists to manage and analyse large multidimensional data sets. Today we can generate hundreds of gigabases of DNA and RNA sequencing data in a week for less than US$5,000. The astonishing rate of data generation by these low-cost, high-throughput technologies in genomics is being matched by that of other technologies, such as real-time imaging and mass spectrometry-based flow cytometry. Success in the life sciences will depend on our ability to properly interpret the large-scale, high-dimensional data sets that are generated by these technologies, which in turn requires us to adopt advances in informatics. Here we discuss how we can master the different types of computational environments that exist — such as cloud and heterogeneous computing — to successfully tackle our big data problems." @default.
- W2023116290 created "2016-06-24" @default.
- W2023116290 creator A5024631076 @default.
- W2023116290 creator A5027174942 @default.
- W2023116290 creator A5030954235 @default.
- W2023116290 creator A5033995613 @default.
- W2023116290 creator A5071946434 @default.
- W2023116290 date "2010-09-01" @default.
- W2023116290 modified "2023-10-17" @default.
- W2023116290 title "Computational solutions to large-scale data management and analysis" @default.
- W2023116290 cites W1970263201 @default.
- W2023116290 cites W1973858832 @default.
- W2023116290 cites W1973950074 @default.
- W2023116290 cites W1977367431 @default.
- W2023116290 cites W1984783889 @default.
- W2023116290 cites W1989889539 @default.
- W2023116290 cites W1990073900 @default.
- W2023116290 cites W2022821295 @default.
- W2023116290 cites W2038078635 @default.
- W2023116290 cites W2038254572 @default.
- W2023116290 cites W2043842514 @default.
- W2023116290 cites W2045474596 @default.
- W2023116290 cites W2079756411 @default.
- W2023116290 cites W2087383805 @default.
- W2023116290 cites W2090808827 @default.
- W2023116290 cites W2091901410 @default.
- W2023116290 cites W2092252893 @default.
- W2023116290 cites W2103148772 @default.
- W2023116290 cites W2107677337 @default.
- W2023116290 cites W2108157916 @default.
- W2023116290 cites W2121762798 @default.
- W2023116290 cites W2121918723 @default.
- W2023116290 cites W2125826054 @default.
- W2023116290 cites W2132341951 @default.
- W2023116290 cites W2133540884 @default.
- W2023116290 cites W2136078375 @default.
- W2023116290 cites W2152227081 @default.
- W2023116290 cites W2166539201 @default.
- W2023116290 cites W2166621589 @default.
- W2023116290 cites W2169659816 @default.
- W2023116290 cites W3138798301 @default.
- W2023116290 cites W4313016175 @default.
- W2023116290 doi "https://doi.org/10.1038/nrg2857" @default.
- W2023116290 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3124937" @default.
- W2023116290 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20717155" @default.
- W2023116290 hasPublicationYear "2010" @default.
- W2023116290 type Work @default.
- W2023116290 sameAs 2023116290 @default.
- W2023116290 citedByCount "553" @default.
- W2023116290 countsByYear W20231162902012 @default.
- W2023116290 countsByYear W20231162902013 @default.
- W2023116290 countsByYear W20231162902014 @default.
- W2023116290 countsByYear W20231162902015 @default.
- W2023116290 countsByYear W20231162902016 @default.
- W2023116290 countsByYear W20231162902017 @default.
- W2023116290 countsByYear W20231162902018 @default.
- W2023116290 countsByYear W20231162902019 @default.
- W2023116290 countsByYear W20231162902020 @default.
- W2023116290 countsByYear W20231162902021 @default.
- W2023116290 countsByYear W20231162902022 @default.
- W2023116290 countsByYear W20231162902023 @default.
- W2023116290 crossrefType "journal-article" @default.
- W2023116290 hasAuthorship W2023116290A5024631076 @default.
- W2023116290 hasAuthorship W2023116290A5027174942 @default.
- W2023116290 hasAuthorship W2023116290A5030954235 @default.
- W2023116290 hasAuthorship W2023116290A5033995613 @default.
- W2023116290 hasAuthorship W2023116290A5071946434 @default.
- W2023116290 hasBestOaLocation W20231162902 @default.
- W2023116290 hasConcept C111919701 @default.
- W2023116290 hasConcept C119599485 @default.
- W2023116290 hasConcept C120314980 @default.
- W2023116290 hasConcept C121332964 @default.
- W2023116290 hasConcept C124101348 @default.
- W2023116290 hasConcept C127413603 @default.
- W2023116290 hasConcept C1668388 @default.
- W2023116290 hasConcept C191630685 @default.
- W2023116290 hasConcept C2522767166 @default.
- W2023116290 hasConcept C2778755073 @default.
- W2023116290 hasConcept C41008148 @default.
- W2023116290 hasConcept C62520636 @default.
- W2023116290 hasConcept C75684735 @default.
- W2023116290 hasConcept C79974875 @default.
- W2023116290 hasConceptScore W2023116290C111919701 @default.
- W2023116290 hasConceptScore W2023116290C119599485 @default.
- W2023116290 hasConceptScore W2023116290C120314980 @default.
- W2023116290 hasConceptScore W2023116290C121332964 @default.
- W2023116290 hasConceptScore W2023116290C124101348 @default.
- W2023116290 hasConceptScore W2023116290C127413603 @default.
- W2023116290 hasConceptScore W2023116290C1668388 @default.
- W2023116290 hasConceptScore W2023116290C191630685 @default.
- W2023116290 hasConceptScore W2023116290C2522767166 @default.
- W2023116290 hasConceptScore W2023116290C2778755073 @default.
- W2023116290 hasConceptScore W2023116290C41008148 @default.
- W2023116290 hasConceptScore W2023116290C62520636 @default.
- W2023116290 hasConceptScore W2023116290C75684735 @default.
- W2023116290 hasConceptScore W2023116290C79974875 @default.
- W2023116290 hasIssue "9" @default.
- W2023116290 hasLocation W20231162901 @default.